Asymmetric Bilateral Motion Estimation for Video Frame Interpolation, ICCV2021

Related tags

Deep LearningABME
Overview

ABME (ICCV2021)

PWC PWC

Junheum Park, Chul Lee, and Chang-Su Kim

Official PyTorch Code for "Asymmetric Bilateral Motion Estimation for Video Frame Interpolation" [paper]

Requirements

  • PyTorch 1.7
  • CUDA 11.0
  • CuDNN 8.0.5
  • python 3.8

Installation

Create conda environment:

    $ conda create -n ABME python=3.8 anaconda
    $ conda activate ABME
    $ pip install opencv-python
    $ conda install pytorch==1.7 torchvision cudatoolkit=11.0 -c pytorch

Download repository:

    $ git clone https://github.com/JunHeum/ABME.git

Download pre-trained model parameters:

    $ unzip ABME_Weights.zip

Check your nvcc version:

    $ nvcc --version
  • To install correlation layer, you should match your nvcc version with cudatoolkit version of your conda environment. [nvcc_setting]

Install correlation layer:

    $ cd correlation_package
    $ python setup.py install

Quick Usage

Generate an intermediate frame on your pair of frames:

    $ python run.py --first images/im1.png --second images/im3.png --output images/im2.png

Test

  1. Download the datasets.
  2. Copy the path of the test dataset. (e.g., /hdd/vimeo_interp_test)
  3. Parse this path into the --dataset_root argument.
  4. (optional) You can ignore the --is_save. But, it yields a slightly different performance than evaluation on saved images.
    $ python test.py --name ABME --is_save --Dataset ucf101 --dataset_root /where/is/your/ucf101_dataset/path
    $ python test.py --name ABME --is_save --Dataset vimeo --dataset_root /where/is/your/vimeo_dataset/path
    $ python test.py --name ABME --is_save --Dataset SNU-FILM-all --dataset_root /where/is/your/FILM_dataset/path
    $ python test.py --name ABME --is_save --Dataset Xiph_HD --dataset_root /where/is/your/Xiph_dataset/path
    $ python test.py --name ABME --is_save --Dataset X4K1000FPS --dataset_root /where/is/your/X4K1000FPS_dataset/path

Experimental Results

We provide interpolated frames on test datasets for fast comparison or users with limited GPU memory. Especially, the test on X4K1000FPS requires at least 20GB of GPU memory.

Table

Train

We plan to share train codes soon!

Citation

Please cite the following paper if you feel this repository useful.

    @inproceedings{park2021ABME,
        author    = {Park, Junheum and Lee, Chul and Kim, Chang-Su}, 
        title     = {Asymmetric Bilateral Motion Estimation for Video Frame Interpolation}, 
        booktitle = {International Conference on Computer Vision},
        year      = {2021}
    }

License

See MIT License

Owner
Junheum Park
BS: EE, Korea University Grad: EE, Korea University (Current)
Junheum Park
A New Approach to Overgenerating and Scoring Abstractive Summaries

We provide the source code for the paper "A New Approach to Overgenerating and Scoring Abstractive Summaries" accepted at NAACL'21. If you find the code useful, please cite the following paper.

Kaiqiang Song 4 Apr 03, 2022
Face-Recognition-Attendence-System - This face recognition Attendence system using Python

Face-Recognition-Attendence-System I have developed this face recognition Attend

Riya Gupta 4 May 10, 2022
Code Release for ICCV 2021 (oral), "AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds"

AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds (ICCV 2021 oral) **Project Page | Arxiv ** Runsong Zhu¹, Yuan Liu², Zhen Dong¹, Te

40 Dec 30, 2022
Implementing DropPath/StochasticDepth in PyTorch

%load_ext memory_profiler Implementing Stochastic Depth/Drop Path In PyTorch DropPath is available on glasses my computer vision library! Introduction

Francesco Saverio Zuppichini 13 Jan 05, 2023
Neural Architecture Search Powered by Swarm Intelligence 🐜

Neural Architecture Search Powered by Swarm Intelligence 🐜 DeepSwarm DeepSwarm is an open-source library which uses Ant Colony Optimization to tackle

288 Oct 28, 2022
PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmentation

Self-Supervised Anomaly Segmentation Intorduction This is a PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmen

WuFan 2 Jan 27, 2022
PyTorch Implementation of CvT: Introducing Convolutions to Vision Transformers

CvT: Introducing Convolutions to Vision Transformers Pytorch implementation of CvT: Introducing Convolutions to Vision Transformers Usage: img = torch

Rishikesh (ऋषिकेश) 193 Jan 03, 2023
An open source implementation of CLIP.

OpenCLIP Welcome to an open source implementation of OpenAI's CLIP (Contrastive Language-Image Pre-training). The goal of this repository is to enable

2.7k Dec 31, 2022
Official implementation of the paper 'Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution' in CVPR 2022

LDL Paper | Supplementary Material Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution Jie Liang*, Hu

150 Dec 26, 2022
Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs

Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs In this work, we propose an algorithm DP-SCAFFOLD(-warm), whic

19 Nov 10, 2022
On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization

On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization This repository contains the evaluation code and alternative pseudo ground truth

Torsten Sattler 36 Dec 22, 2022
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
Scales, Chords, and Cadences: Practical Music Theory for MIR Researchers

ISMIR-musicTheoryTutorial This repository has slides and Jupyter notebooks for the ISMIR 2021 tutorial Scales, Chords, and Cadences: Practical Music T

Johanna Devaney 58 Oct 11, 2022
CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum

CO-PILOT CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum, NeurIPS 2021, Shuang Ao, Tianyi Zhou, Guodong Long, Qingh

Shuang Ao 1 Feb 18, 2022
Codes and scripts for "Explainable Semantic Space by Grounding Languageto Vision with Cross-Modal Contrastive Learning"

Visually Grounded Bert Language Model This repository is the official implementation of Explainable Semantic Space by Grounding Language to Vision wit

17 Dec 17, 2022
This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Developed By Google!

Machine Learning Hand Detector This is a Machine Learning Based Hand Detector Project, It Uses Machine Learning Models and Modules Like Mediapipe, Dev

Popstar Idhant 3 Feb 25, 2022
Mememoji - A facial expression classification system that recognizes 6 basic emotions: happy, sad, surprise, fear, anger and neutral.

a project built with deep convolutional neural network and ❤️ Table of Contents Motivation The Database The Model 3.1 Input Layer 3.2 Convolutional La

Jostine Ho 761 Dec 05, 2022
Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system

Recommender-Systems Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system So the data

Yash Kumar 0 Jan 20, 2022
Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation

Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation Official PyTorch implementation for the paper Look

Rishabh Jangir 20 Nov 24, 2022
Code for database and frontend of webpage for Neural Fields in Visual Computing and Beyond.

Neural Fields in Visual Computing—Complementary Webpage This is based on the amazing MiniConf project from Hendrik Strobelt and Sasha Rush—thank you!

Brown University Visual Computing Group 29 Nov 30, 2022