Immortal tracker

Overview

Immortal_tracker

Prerequisite

Our code is tested for Python 3.6.
To install required liabraries:

pip install -r requirements.txt

Waymo Open Dataset

Prepare dataset & off-the-shelf detections

Download WOD perception dataset:

#Waymo Dataset         
└── waymo
       ├── training (not required)  
       ├── validation   
       ├── testing 

To extract timestamp infos/ego infos from .tfrecord files, run the following:

bash preparedata/waymo/waymo_preparedata.sh  /
   
    /waymo

   

Run the following to convert detection results into to .npz files. The detection results should be in official WOD submission format(.bin)
We recommand you to use CenterPoint(two-frame model for tracking) detection results for reproducing our results. Please follow https://github.com/tianweiy/CenterPoint or email its author for CenterPoint detection results.

bash preparedata/waymo/waymo_convert_detection.sh 
   
    /detection_result.bin cp

#you can also use other detections:
#bash preparedata/waymo/waymo_convert_detection.sh 
     
     

     
    
   

Inference

Use the following command to start inferencing on WOD. The validation set is used by default.

python main_waymo.py --name immortal --det_name cp --config_path configs/waymo_configs/immortal.yaml --process 8

Evaluation with WOD official devkit:

Follow https://github.com/waymo-research/waymo-open-dataset to build the evaluation tools and run the following command for evaluation:

#Convert the tracking results into .bin file
python evaluation/waymo/pred_bin.py --name immortal
#For evaluation

   
    /bazel-bin/waymo_open_dataset/metrics/tools/compute_tracking_metrics_main mot_results/waymo/validation/immortal/bin/pred.bin 
    
     /validation_gt.bin

    
   

nuScenes Dataset

Prepare dataset & off-the-shelf detections

Download nuScenes perception dataset

# For nuScenes Dataset         
└── NUSCENES_DATASET_ROOT
       ├── samples       
       ├── sweeps       
       ├── maps         
       ├── v1.0-trainval 
       ├── v1.0-test

To extract timestamp infos/ego infos, run the following:

bash preparedata/nuscenes/nu_preparedata.sh 
   
    /nuscenes

   

Run the following to convert detection results into to .npz files. The detection results should be in official nuScenes submission format(.json)
We recommand you to use centerpoint(two-frame model for tracking) detection results for reproducing our results.

bash preparedata/nuscenes/nu_convert_detection.sh  
   
    /detection_result.json cp

#you can also use other detections:
#bash preparedata/nuscenes/nu_convert_detection.sh 
     
     

     
    
   

Inference

Use the following command to start inferencing on nuScenes. The validation set is used by default.

python main_nuscenes.py --name immortal --det_name cp --config_path configs/nu_configs/immortal.yaml --process 8

Evaluation with nuScenes official devkit:

Follow https://github.com/nutonomy/nuscenes-devkit to build the official evaluation tools for nuScenes. Run the following command for evaluation:

/nuscenes ">
#To convert tracking results into .json format
bash evaluation/nuscenes/pipeline.sh immortal
#To evaluate
python 
   
    /nuscenes-devkit/python-sdk/nuscenes/eval/tracking/evaluate.py \
"./mot_results/nuscenes/validation_2hz/immortal/results/results.json" \
--output_dir "./mot_results/nuscenes/validation_2hz/immortal/results" \
--eval_set "val" \
--dataroot 
    
     /nuscenes

    
   
Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

UCL Natural Language Processing 71 Dec 29, 2022
A module for solving and visualizing Schrödinger equation.

qmsolve This is an attempt at making a solid, easy to use solver, capable of solving and visualize the Schrödinger equation for multiple particles, an

506 Dec 28, 2022
A simple configurable bot for sending arXiv article alert by mail

arXiv-newsletter A simple configurable bot for sending arXiv article alert by mail. Prerequisites PyYAML=5.3.1 arxiv=1.4.0 Configuration All config

SXKDZ 21 Nov 09, 2022
Spatial Single-Cell Analysis Toolkit

Single-Cell Image Analysis Package Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spa

Laboratory of Systems Pharmacology @ Harvard 30 Nov 08, 2022
FlingBot: The Unreasonable Effectiveness of Dynamic Manipulations for Cloth Unfolding

This repository contains code for training and evaluating FlingBot in both simulation and real-world settings on a dual-UR5 robot arm setup for Ubuntu 18.04

Columbia Artificial Intelligence and Robotics Lab 70 Dec 06, 2022
PyTorch Code for "Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning"

Generalization in Dexterous Manipulation via Geometry-Aware Multi-Task Learning [Project Page] [Paper] Wenlong Huang1, Igor Mordatch2, Pieter Abbeel1,

Wenlong Huang 40 Nov 22, 2022
git《Investigating Loss Functions for Extreme Super-Resolution》(CVPR 2020) GitHub:

Investigating Loss Functions for Extreme Super-Resolution NTIRE 2020 Perceptual Extreme Super-Resolution Submission. Our method ranked first and secon

Sejong Yang 0 Oct 17, 2022
Fight Recognition from Still Images in the Wild @ WACVW2022, Real-world Surveillance Workshop

Fight Detection from Still Images in the Wild Detecting fights from still images is an important task required to limit the distribution of social med

Şeymanur Aktı 10 Nov 09, 2022
ALBERT-pytorch-implementation - ALBERT pytorch implementation

ALBERT-pytorch-implementation developing... 모델의 개념이해를 돕기 위한 구현물로 현재 변수명을 상세히 적었고

BG Kim 3 Oct 06, 2022
Official implementation of YOGO for Point-Cloud Processing

You Only Group Once: Efficient Point-Cloud Processing with Token Representation and Relation Inference Module By Chenfeng Xu, Bohan Zhai, Bichen Wu, T

Chenfeng Xu 67 Dec 20, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

Zixuan Ke 176 Jan 05, 2023
Source code for Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning

Adaptively Calibrated Critic Estimates for Deep Reinforcement Learning Official implementation of ACC, described in the paper "Adaptively Calibrated C

3 Sep 16, 2022
Computer Vision and Pattern Recognition, NUS CS4243, 2022

CS4243_2022 Computer Vision and Pattern Recognition, NUS CS4243, 2022 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : h

Xavier Bresson 142 Dec 15, 2022
Pytorch implementation of the paper: "A Unified Framework for Separating Superimposed Images", in CVPR 2020.

Deep Adversarial Decomposition PDF | Supp | 1min-DemoVideo Pytorch implementation of the paper: "Deep Adversarial Decomposition: A Unified Framework f

Zhengxia Zou 72 Dec 18, 2022
Awesome Long-Tailed Learning

Awesome Long-Tailed Learning This repo pays specially attention to the long-tailed distribution, where labels follow a long-tailed or power-law distri

Stomach_ache 284 Jan 06, 2023
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection

Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat

AIStream 1.2k Jan 04, 2023
Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

2.7k Jan 05, 2023
Codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Contrast and Mix (CoMix) The repository contains the codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Backgroun

Computer Vision and Intelligence Research (CVIR) 13 Dec 10, 2022
[CVPRW 21] "BNN - BN = ? Training Binary Neural Networks without Batch Normalization", Tianlong Chen, Zhenyu Zhang, Xu Ouyang, Zechun Liu, Zhiqiang Shen, Zhangyang Wang

BNN - BN = ? Training Binary Neural Networks without Batch Normalization Codes for this paper BNN - BN = ? Training Binary Neural Networks without Bat

VITA 40 Dec 30, 2022
Table-Extractor 表格抽取

(t)able-(ex)tractor 本项目旨在实现pdf表格抽取。 Models 版面分析模块(Yolo) 表格结构抽取(ResNet + Transformer) 文字识别模块(CRNN + CTC Loss) Acknowledgements TableMaster attention-i

2 Jan 15, 2022