Blender scripts for computing geodesic distance

Overview

GeoDoodle

Geodesic distance computation for Blender meshes

Table of Contents

  1. Overivew
  2. Usage
  3. Implementation

Overview

This addon provides an operator for computing geodesic distances on general meshes (ngons and triangular).

Geodesic distance describes a shortest path from any point on the surface to some boundary, e.g. a selected vertex. It can differ from simple Euclidian distance significantly.

Prerequisites

The addon uses the SciPy math library for efficient sparse matrix computations.

SciPy is not shipped with the Python installation in Blender, so you may need to install the package once. A convenient method is to use the text editor.

Note: You may need to run Blender in administrator mode for permissions to install into the packages folder!

  1. Open Blender.

  2. Open a text editor window and create a new text.

  3. Paste in the following code and execute the script:

    import sys
    import subprocess
    
    py_exec = sys.executable
    py_prefix = sys.exec_prefix
    # ensure pip is installed & update
    subprocess.call([str(py_exec), "-m", "ensurepip", "--user"])
    subprocess.call([str(py_exec), "-m", "pip", "install", "--target={}".format(py_prefix), "--upgrade", "pip"])
    # install dependencies using pip
    # dependencies such as 'numpy' could be added to the end of this command's list
    subprocess.call([str(py_exec),"-m", "pip", "install", "--target={}".format(py_prefix), "scipy"])
    

    Source: https://blender.stackexchange.com/a/153520

Usage

  1. Create a mesh object.

  2. Add a boundary vertex group. The default name should be "Boundary", although the operator can work with arbitrary vertex groups.

    Procedurally generated vertex groups are also supported (e.g. with a proximity modifier). However, topology modifiers such as subdivision are not recommended because the operator will copy the modifier result to the base mesh.

  3. Select the mesh object.

  4. Invoke the Geodesic Distance operator from the dropdown next to the vertex group list.

Implementation

The implementation is based on the Heat Method as described by Crane et al. 1. The Laplacian for polygonal meshes is described in the paper "Polygon laplacian made simple" 2.

1: Crane, Keenan, Clarisse Weischedel, and Max Wardetzky. "Geodesics in heat: A new approach to computing distance based on heat flow." ACM Transactions on Graphics (TOG) 32.5 (2013): 1-11.

2: Bunge, Astrid, et al. "Polygon laplacian made simple." Computer Graphics Forum. Vol. 39. No. 2. 2020.

Python inverse kinematics for your robot model based on Pinocchio.

Python inverse kinematics for your robot model based on Pinocchio.

Stéphane Caron 50 Dec 22, 2022
An AI made using artificial intelligence (AI) and machine learning algorithms (ML) .

DTech.AIML An AI made using artificial intelligence (AI) and machine learning algorithms (ML) . This is created by help of some members in my team and

1 Jan 06, 2022
Asterisk is a framework to generate high-quality training datasets at scale

Asterisk is a framework to generate high-quality training datasets at scale

Mona Nashaat 44 Apr 25, 2022
Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition

Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition Introduction Run attack: SGADV.py Objective function: foolbox/attacks/gradi

1 Jul 18, 2022
Wordle-solver - Wordle answer generation program in python

🟨 Wordle Solver 🟩 Wordle answer generation program in python ✔️ Requirements U

Dahyun Kang 4 May 28, 2022
ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

ClevrTex This repository contains dataset generation code for ClevrTex benchmark from paper: ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi

Laurynas Karazija 26 Dec 21, 2022
This repo provides the base code for pytorch-lightning and weight and biases simultaneous integration.

Write your model faster with pytorch-lightning-wadb-code-backbone This repository provides the base code for pytorch-lightning and weight and biases s

9 Mar 29, 2022
A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation

Paper Khoi Nguyen, Sinisa Todorovic "A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation", accepted to ICCV 2021 Our code is mai

Khoi Nguyen 5 Aug 14, 2022
Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning".

ERICA Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive L

THUNLP 75 Nov 02, 2022
Unofficial keras(tensorflow) implementation of MAE model from Masked Autoencoders Are Scalable Vision Learners

MAE-keras Unofficial keras(tensorflow) implementation of MAE model described in 'Masked Autoencoders Are Scalable Vision Learners'. This work has been

Yewon 11 Jun 12, 2022
A dataset for online Arabic calligraphy

Calliar Calliar is a dataset for Arabic calligraphy. The dataset consists of 2500 json files that contain strokes manually annotated for Arabic callig

ARBML 114 Dec 28, 2022
Creating Artificial Life with Reinforcement Learning

Although Evolutionary Algorithms have shown to result in interesting behavior, they focus on learning across generations whereas behavior could also be learned during ones lifetime.

Maarten Grootendorst 49 Dec 21, 2022
A modular, research-friendly framework for high-performance and inference of sequence models at many scales

T5X T5X is a modular, composable, research-friendly framework for high-performance, configurable, self-service training, evaluation, and inference of

Google Research 1.1k Jan 08, 2023
Scalable machine learning based time series forecasting

mlforecast Scalable machine learning based time series forecasting. Install PyPI pip install mlforecast Optional dependencies If you want more functio

Nixtla 145 Dec 24, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers

Effect of Different Encodings and Distance Functions on Quantum Instance-based Classifiers The repository contains the code to reproduce the experimen

Alessandro Berti 4 Aug 24, 2022
K-Means Clustering and Hierarchical Clustering Unsupervised Learning Solution in Python3.

Unsupervised Learning - K-Means Clustering and Hierarchical Clustering - The Heritage Foundation's Economic Freedom Index Analysis 2019 - By David Sal

David Salako 1 Jan 12, 2022
The original weights of some Caffe models, ported to PyTorch.

pytorch-caffe-models This repo contains the original weights of some Caffe models, ported to PyTorch. Currently there are: GoogLeNet (Going Deeper wit

Katherine Crowson 9 Nov 04, 2022
Structural Constraints on Information Content in Human Brain States

Structural Constraints on Information Content in Human Brain States Code accompanying the paper "The information content of brain states is explained

Leon Weninger 3 Sep 07, 2022
PyKaldi GOP-DNN on Epa-DB

PyKaldi GOP-DNN on Epa-DB This repository has the tools to run a PyKaldi GOP-DNN algorithm on Epa-DB, a database of non-native English speech by Spani

18 Dec 14, 2022