ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

Overview

ClevrTex

This repository contains dataset generation code for ClevrTex benchmark from paper: ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

Requirements

The follwing preparation steps are required to generate the dataset.

  1. Setting up blender
  2. Setting up python
  3. Setting up textures and materials

Blender

We used blender 2.92.3 for rendering. Newer versions are untested but should work at least up to a minor bump. One might download it from Blender website and follow installation instructions process as normal then skip to the final step. Or simply execute this (will set up blender in /usr/local/blender):

mkdir /usr/local/blender && \
curl -SL "http://mirror.cs.umn.edu/blender.org/release/Blender2.92/blender-2.92.0-linux64.tar.xz" -o blender.tar.xz && \
tar -xvf blender.tar.xz -C /usr/local/blender --strip-components=1 && \
rm blender.tar.xz && ln -s /usr/local/blender/blender /usr/local/bin/blender

Since we use "system interpreter" (see intructions bellow to set up a compatible one) for Blender headless mode, remove python that comes pre-packaged.

rm -rf /usr/local/blender/2.92/python

Python

One needs to set up python with required libraries and with correct version. Blender uses python 3.7 (older or newer version will not work). For simplicty, use conda:

conda env create -f env.yaml

When invoking Blender use (assumes the appropriate env was named p37) :

PYTHONPATH=~/miniconda3/envs/p37/bin/python \
PYTHONHOME=~/miniconda3/envs/p37 \
blender --background --python-use-system-env --python generate.py -- <args>

Textures

The final piece is to set up source assets for rendering, namely the materials. Briefly, the textures used to create the materials are copyrighted by Poliigon Pty Ltd. Textures used in the ClevrTex dataset are freely availble (at the time of writing) and should be downloaded from www.poliigon.com (download metalness workflow for matalics). Please check MATERIALS.md for full list.

Download appropriate textures and place them into data/materials/textures and data/outd_materials/textures. Note, the textures should be in the directory not in subfolders. We include .blend files for materials which have been stripped of the original textures (due to licensing restrictions) but contain the settings adjustments made. Skip the following instructions if working with existing .blend files.

To add new materials:

The following process needs to be applied for each new material. Consider using addon provided by Poliigon.

  1. Import materials textures as per addon's instructions.
  2. Open the material in question in node editor in Blender.
  3. Create a new node group of all nodes except the output node (yes this will nest the groups, it is intentional). We rely on the trick identified by Johnson et al. in the original CLEVR script where Blender seems to copy-by-value node trees, which makes it trivial to create duplicate materials in the scene.
  4. Connect any inputs of interest to the group inputs. Crucially, check that Scale and Displacement Strength are available as inputs. The sampling script will pass these in to ensure that background/objects have correct scale adjustements to ensure level of details does not disappear between small objects and large background. Check that outputs have been connected to Shader output nodes (should have happended automatically).
  5. Ensure that the materials look good with other parameters. Consider including additional logic nodes to e.g. scaling, and displacement parameters. Materials have Random \in [0, 1] number passed to them as input (if available), if one needs to randomise aspects of the material.
    • (Optional) Render the materials to see how they would look in the output. Repeat until desired look is acheived.
  6. Ensure the node group is named identically to the material and then save it as your-node-group-name.blend.

This is unfortunatelly a manual process to ensure all textures look good that usually involves several test render per texture.

Debugging textures

To ensure the textures are found and look good, consider trying with a single texture first (to save time). To scan for errors and see how the end result might look like, consider using --test_scan option in the generation script.* In addition, consider --blendfiles option to save blender scene after rendering for manual inspection.

Generating

To generate the dataset run the following (will produce a LOCAL_debug_000001.png example):

cd clevrtex-gen
 ./local_test.bash

Otherwise, please see arguments available to customise the rendering. Dataset variants can be recreated using appropriate .json files.

Using ClevrTex

See project page for download links for CLEVRTEX. clevrtex_eval.py file contains dataloading logic to for convenient access to CLEVRTEX data. Consider

from clevrtex_eval import CLEVRTEX, collate_fn

clevrtex = CLEVRTEX(
    'path-to-downloaded-data', # Untar'ed
    dataset_variant='full', # 'full' for main CLEVRTEX, 'outd' for OOD, 'pbg','vbg','grassbg','camo' for variants.
    split='train',
    crop=True,
    resize=(128, 128),
    return_metadata=True # Useful only for evaluation, wastes time on I/O otherwise 
)
# Use collate_fn to handle metadata batching
dataloader = torch.utils.data.DataLoader(clevrtex, batch_size=BATCH, shuffle=True, collate_fn=collate_fn)

Evaluation

See CLEVRTEX_Evaluator in clevrtex_eval.py. It implements all the utilities needed.

CLEVR

This dataset builds upon CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning
Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Fei-Fei Li, Larry Zitnick, Ross Girshick
presented at CVPR 2017, code available at https://github.com/facebookresearch/clevr-dataset-gen

In particular we use a method for computing cardinal directions from CLEVR. See the original licence included in the clevr_qa.py file.

BibTeX

If you use ClevrTex dataset or generation code consider citing:

BiBTeX coming soon...
Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers

Official TensorFlow implementation of the unsupervised reconstruction model using zero-Shot Learned Adversarial TransformERs (SLATER). (https://arxiv.

ICON Lab 22 Dec 22, 2022
Snscrape-jsonl-urls-extractor - Extracts urls from jsonl produced by snscrape

snscrape-jsonl-urls-extractor extracts urls from jsonl produced by snscrape Usag

1 Feb 26, 2022
Unofficial implementation of Proxy Anchor Loss for Deep Metric Learning

Proxy Anchor Loss for Deep Metric Learning Unofficial pytorch, tensorflow and mxnet implementations of Proxy Anchor Loss for Deep Metric Learning. Not

Geonmo Gu 3 Jun 09, 2021
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network

ild-cnn This is supplementary material for the manuscript: "Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neur

22 Nov 05, 2022
Self-supervised Deep LiDAR Odometry for Robotic Applications

DeLORA: Self-supervised Deep LiDAR Odometry for Robotic Applications Overview Paper: link Video: link ICRA Presentation: link This is the correspondin

Robotic Systems Lab - Legged Robotics at ETH Zürich 181 Dec 29, 2022
A Dataset of Python Challenges for AI Research

Python Programming Puzzles (P3) This repo contains a dataset of python programming puzzles which can be used to teach and evaluate an AI's programming

Microsoft 850 Dec 24, 2022
Manifold Alignment for Semantically Aligned Style Transfer

Manifold Alignment for Semantically Aligned Style Transfer [Paper] Getting Started MAST has been tested on CentOS 7.6 with python = 3.6. It supports

35 Nov 14, 2022
Equivariant Imaging: Learning Beyond the Range Space

Equivariant Imaging: Learning Beyond the Range Space Equivariant Imaging: Learning Beyond the Range Space Dongdong Chen, Julián Tachella, Mike E. Davi

Dongdong Chen 46 Jan 01, 2023
University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN

Music-Sentiment-Transfer University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN Poster: Music Sentiment Transfer

Miles Sigel 2 Jan 24, 2022
PyTorch implementation for Score-Based Generative Modeling through Stochastic Differential Equations (ICLR 2021, Oral)

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains a PyTorch implementation for the paper Score-Based Genera

Yang Song 757 Jan 04, 2023
Code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty

Deep Deterministic Uncertainty This repository contains the code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic

Jishnu Mukhoti 69 Nov 28, 2022
Hyperbolic Procrustes Analysis Using Riemannian Geometry

Hyperbolic Procrustes Analysis Using Riemannian Geometry The code in this repository creates the figures presented in this article: Please notice that

Ronen Talmon's Lab 2 Jan 08, 2023
Code Repository for Liquid Time-Constant Networks (LTCs)

Liquid time-constant Networks (LTCs) [Update] A Pytorch version is added in our sister repository: https://github.com/mlech26l/keras-ncp This is the o

Ramin Hasani 553 Dec 27, 2022
Live training loss plot in Jupyter Notebook for Keras, PyTorch and others

livelossplot Don't train deep learning models blindfolded! Be impatient and look at each epoch of your training! (RECENT CHANGES, EXAMPLES IN COLAB, A

Piotr Migdał 1.2k Jan 08, 2023
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transf

SenseTime X-Lab 573 Jan 04, 2023
Yolact-keras实例分割模型在keras当中的实现

Yolact-keras实例分割模型在keras当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料 Reference 性能情况 训练数

Bubbliiiing 11 Dec 26, 2022
Yas CRNN model training - Yet Another Genshin Impact Scanner

Yas-Train Yet Another Genshin Impact Scanner 又一个原神圣遗物导出器 介绍 该仓库为 Yas 的模型训练程序 相关资料 MobileNetV3 CRNN 使用 假设你会设置基本的pytorch环境。 生成数据集 python main.py gen 训练

wormtql 18 Jan 08, 2023
PyTorch implementation of popular datasets and models in remote sensing

PyTorch Remote Sensing (torchrs) (WIP) PyTorch implementation of popular datasets and models in remote sensing tasks (Change Detection, Image Super Re

isaac 222 Dec 28, 2022
Main Results on ImageNet with Pretrained Models

This repository contains Pytorch evaluation code, training code and pretrained models for the following projects: SPACH (A Battle of Network Structure

Microsoft 151 Dec 14, 2022