A two-stage U-Net for high-fidelity denoising of historical recordings

Overview

A two-stage U-Net for high-fidelity denoising of historical recordings

Official repository of the paper (not submitted yet):

E. Moliner and V. Välimäki,, "A two-stage U-Net for high-fidelity denosing of historical recordinds", in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Singapore, May, 2022

Abstract

Enhancing the sound quality of historical music recordings is a long-standing problem. This paper presents a novel denoising method based on a fully-convolutional deep neural network. A two-stage U-Net model architecture is designed to model and suppress the degradations with high fidelity. The method processes the time-frequency representation of audio, and is trained using realistic noisy data to jointly remove hiss, clicks, thumps, and other common additive disturbances from old analog discs. The proposed model outperforms previous methods in both objective and subjective metrics. The results of a formal blind listening test show that the method can denoise real gramophone recordings with an excellent quality. This study shows the importance of realistic training data and the power of deep learning in audio restoration.

Schema represention

Listen to our audio samples

Requirements

You will need at least python 3.7 and CUDA 10.1 if you want to use GPU. See requirements.txt for the required package versions.

To install the environment through anaconda, follow the instructions:

conda env update -f environment.yml
conda activate historical_denoiser

Denoising Recordings

Run the following commands to clone the repository and install the pretrained weights of the two-stage U-Net model:

git clone https://github.com/eloimoliner/denoising-historical-recordings.git
cd denoising-historical-recordings
wget https://github.com/eloimoliner/denoising-historical-recordings/releases/download/v0.0/checkpoint.zip
unzip checkpoint.zip /experiments/trained_model/

If the environment is installed correctly, you can denoise an audio file by running:

bash inference.sh "file name"

A ".wav" file with the denoised version, as well as the residual noise and the original signal in "mono", will be generated in the same directory as the input file.

Training

TODO

Comments
  • Will it work in Windows without CUDA?

    Will it work in Windows without CUDA?

    Hello, The readme says: "You will need at least python 3.7 and CUDA 10.1 if you want to use GPU."

    Unfortunately, my first attempt to run it in Windows without CUDA-supporting VGA failed. There is really no separate environment file for CPU-only? Is it possible to make it work without massive changes to the code?

    opened by vitacon 15
  • installation without conda

    installation without conda

    Hi,

    could you leave some hints about how to install this without conda? Your readme appears to be very much specified to this one case. Also it seems that you develop under linux so you use bash to execute. Maybe here a hint for win- users would be cool too.

    I am just trying to get this to run under windows and so far had no success. I will update if I get further. All the best!

    opened by GitHubGeniusOverlord 9
  • strange tensorflow version in requirements.txt

    strange tensorflow version in requirements.txt

    Hi,

    when running python -m pip install tensorflow==2.3.0 as indicated in your requirements file, I get

    ERROR: Could not find a version that satisfies the requirement tensorflow==2.3.0 (from versions: 2.5.0rc0, 2.5.0rc1, 2.5.0rc2, 2.5.0rc3, 2.5.0, 2.5.1, 2.5.2, 2.6.0rc0, 2.6.0rc1, 2.6.0rc2, 2.6.0, 2.6.1, 2.6.2, 2.7.0rc0, 2.7.0rc1, 2.7.0, 2.8.0rc0) ERROR: No matching distribution found for tensorflow==2.3.0

    It seems this version isn't even supported by pip anymore. Upgrade to 2.5.0?

    The same is true for scipy==1.4.1. Not sure about which version to take there.

    opened by GitHubGeniusOverlord 3
  • Update inference.sh

    Update inference.sh

    Small change to allow spaces in file names. Bash expands the variable $1 correctly even if it is in double quotes, python receives a single argument and not (if there are spaces) multiple arguments.

    opened by JorenSix 1
  • How to start training for denoising?

    How to start training for denoising?

    If I would like to do a denoising task, where I've clean signals (in the "clean" folder) and noisy signals (in the "noise" folder).

    opened by listener17 1
Releases(v0.0)
Owner
Eloi Moliner Juanpere
Doctoral candidate on audio signal processing at Aalto university.
Eloi Moliner Juanpere
Implementation for Homogeneous Unbalanced Regularized Optimal Transport

HUROT: An Homogeneous formulation of Unbalanced Regularized Optimal Transport. This repository provides code related to this preprint. This is an alph

Théo Lacombe 1 Feb 17, 2022
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio

Selim Firat Yilmaz 181 Dec 18, 2022
Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images

Lung Segmentation (2D) Repository features UNet inspired architecture used for segmenting lungs on chest X-Ray images. Demo See the application of the

163 Sep 21, 2022
🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series

🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series (optical and radar) The PASTIS Dataset Dataset presentation PASTIS is a benchmark dataset for

86 Jan 04, 2023
Fully convolutional networks for semantic segmentation

FCN-semantic-segmentation Simple end-to-end semantic segmentation using fully convolutional networks [1]. Takes a pretrained 34-layer ResNet [2], remo

Kai Arulkumaran 186 Dec 25, 2022
IA for recognising Traffic Signs using Keras [Tensorflow]

Traffic Signs Recognition ⚠️ 🚦 Fundamentals of Intelligent Systems Introduction 📄 Development of a neural network capable of recognizing nine differ

Sebastián Fernández García 2 Dec 19, 2022
Code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation

PiecewiseLinearTimeSeriesApproximation code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation, SIAM Data Mining 20

Daniel Lemire 21 Oct 27, 2022
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"

This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and

LancoPKU 25 Dec 11, 2022
TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video

TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video Timely handgun detection is a cr

Mario Duran-Vega 18 Dec 26, 2022
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2021/11/19 Thank you for your interest in our work. We have uploaded the code of our MTUNet to help peers conduct further research on i

dotman 92 Dec 25, 2022
Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation in Autonomous Driving".

Video Class Agnostic Segmentation [Method Paper] [Benchmark Paper] [Project] [Demo] Official Datasets and Implementation from our Paper "Video Class A

Mennatullah Siam 26 Oct 24, 2022
StyleGAN2-ada for practice

This version of the newest PyTorch-based StyleGAN2-ada is intended mostly for fellow artists, who rarely look at scientific metrics, but rather need a working creative tool. Tested on Python 3.7 + Py

vadim epstein 170 Nov 16, 2022
Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation

Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation The reference code of Improving Factual Completeness and C

46 Dec 15, 2022
AttGAN: Facial Attribute Editing by Only Changing What You Want (IEEE TIP 2019)

News 11 Jan 2020: We clean up the code to make it more readable! The old version is here: v1. AttGAN TIP Nov. 2019, arXiv Nov. 2017 TensorFlow impleme

Zhenliang He 568 Dec 14, 2022
g9.py - Torch interactive graphics

g9.py - Torch interactive graphics A Torch toy in the browser. Demo at https://srush.github.io/g9py/ This is a shameless copy of g9.js, written in Pyt

Sasha Rush 13 Nov 16, 2022
An attempt at the implementation of GLOM, Geoffrey Hinton's paper for emergent part-whole hierarchies from data

GLOM TensorFlow This Python package attempts to implement GLOM in TensorFlow, which allows advances made by several different groups transformers, neu

Rishit Dagli 32 Feb 21, 2022
Code and data for "TURL: Table Understanding through Representation Learning"

TURL This Repo contains code and data for "TURL: Table Understanding through Representation Learning". Environment and Setup Data Pretraining Finetuni

SunLab-OSU 63 Nov 23, 2022
Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh

generate_cloud_points Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh. Run python disp_mesh.py Or you

Peng Yu 2 Dec 24, 2021
Used to record WKU's utility bills on a regular basis.

WKU水电费小助手 一个用于定期记录WKU水电费的脚本 Looking for English Readme? 背景 由于WKU校园内的水电账单系统时常存在扣费延迟的现象,而补扣的费用缺乏令人信服的证明。不少学生为费用摸不着头脑,但也没有申诉的依据。为了更好地掌握水电费使用情况,留下一手证据,我开源

2 Jul 21, 2022
Text Generation by Learning from Demonstrations

Text Generation by Learning from Demonstrations The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?). Paper arXiv Prere

38 Oct 21, 2022