Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation

Related tags

Deep LearningMTAF
Overview

Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation

Paper

Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation
Antoine Saporta, Tuan-Hung Vu, Matthieu Cord, Patrick Pérez
valeo.ai, France
IEEE International Conference on Computer Vision (ICCV), 2021 (Poster)

If you find this code useful for your research, please cite our paper:

@inproceedings{saporta2021mtaf,
  title={Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation},
  author={Saporta, Antoine and Vu, Tuan-Hung and Cord, Mathieu and P{\'e}rez, Patrick},
  booktitle={ICCV},
  year={2021}
}

Abstract

In this work, we address the task of unsupervised domain adaptation (UDA) for semantic segmentation in presence of multiple target domains: The objective is to train a single model that can handle all these domains at test time. Such a multi-target adaptation is crucial for a variety of scenarios that real-world autonomous systems must handle. It is a challenging setup since one faces not only the domain gap between the labeled source set and the unlabeled target set, but also the distribution shifts existing within the latter among the different target domains. To this end, we introduce two adversarial frameworks: (i) multi-discriminator, which explicitly aligns each target domain to its counterparts, and (ii) multi-target knowledge transfer, which learns a target-agnostic model thanks to a multi-teacher/single-student distillation mechanism.The evaluation is done on four newly-proposed multi-target benchmarks for UDA in semantic segmentation. In all tested scenarios, our approaches consistently outperform baselines, setting competitive standards for the novel task.

Preparation

Pre-requisites

  • Python 3.7
  • Pytorch >= 0.4.1
  • CUDA 9.0 or higher

Installation

  1. Clone the repo:
$ git clone https://github.com/valeoai/MTAF
$ cd MTAF
  1. Install OpenCV if you don't already have it:
$ conda install -c menpo opencv
  1. Install NVIDIA Apex if you don't already have it: follow the instructions on: https://github.com/NVIDIA/apex

  2. Install this repository and the dependencies using pip:

$ pip install -e <root_dir>

With this, you can edit the MTAF code on the fly and import function and classes of MTAF in other project as well.

  1. Optional. To uninstall this package, run:
$ pip uninstall MTAF

Datasets

By default, the datasets are put in <root_dir>/data. We use symlinks to hook the MTAF codebase to the datasets. An alternative option is to explicitlly specify the parameters DATA_DIRECTORY_SOURCE and DATA_DIRECTORY_TARGET in YML configuration files.

  • GTA5: Please follow the instructions here to download images and semantic segmentation annotations. The GTA5 dataset directory should have this basic structure:
<root_dir>/data/GTA5/                               % GTA dataset root
<root_dir>/data/GTA5/images/                        % GTA images
<root_dir>/data/GTA5/labels/                        % Semantic segmentation labels
...
  • Cityscapes: Please follow the instructions in Cityscape to download the images and ground-truths. The Cityscapes dataset directory should have this basic structure:
<root_dir>/data/cityscapes/                         % Cityscapes dataset root
<root_dir>/data/cityscapes/leftImg8bit              % Cityscapes images
<root_dir>/data/cityscapes/leftImg8bit/train
<root_dir>/data/cityscapes/leftImg8bit/val
<root_dir>/data/cityscapes/gtFine                   % Semantic segmentation labels
<root_dir>/data/cityscapes/gtFine/train
<root_dir>/data/cityscapes/gtFine/val
...
  • Mapillary: Please follow the instructions in Mapillary Vistas to download the images and validation ground-truths. The Mapillary Vistas dataset directory should have this basic structure:
<root_dir>/data/mapillary/                          % Mapillary dataset root
<root_dir>/data/mapillary/train                     % Mapillary train set
<root_dir>/data/mapillary/train/images
<root_dir>/data/mapillary/validation                % Mapillary validation set
<root_dir>/data/mapillary/validation/images
<root_dir>/data/mapillary/validation/labels
...
  • IDD: Please follow the instructions in IDD to download the images and validation ground-truths. The IDD Segmentation dataset directory should have this basic structure:
<root_dir>/data/IDD/                         % IDD dataset root
<root_dir>/data/IDD/leftImg8bit              % IDD images
<root_dir>/data/IDD/leftImg8bit/train
<root_dir>/data/IDD/leftImg8bit/val
<root_dir>/data/IDD/gtFine                   % Semantic segmentation labels
<root_dir>/data/IDD/gtFine/val
...

Pre-trained models

Pre-trained models can be downloaded here and put in <root_dir>/pretrained_models

Running the code

For evaluation, execute:

$ cd <root_dir>/mtaf/scripts
$ python test.py --cfg ./configs/gta2cityscapes_mapillary_baseline_pretrained.yml
$ python test.py --cfg ./configs/gta2cityscapes_mapillary_mdis_pretrained.yml
$ python test.py --cfg ./configs/gta2cityscapes_mapillary_mtkt_pretrained.yml

Training

For the experiments done in the paper, we used pytorch 1.3.1 and CUDA 10.0. To ensure reproduction, the random seed has been fixed in the code. Still, you may need to train a few times to reach the comparable performance.

By default, logs and snapshots are stored in <root_dir>/experiments with this structure:

<root_dir>/experiments/logs
<root_dir>/experiments/snapshots

To train the multi-target baseline:

$ cd <root_dir>/mtaf/scripts
$ python train.py --cfg ./configs/gta2cityscapes_mapillary_baseline.yml

To train the Multi-Discriminator framework:

$ cd <root_dir>/mtaf/scripts
$ python train.py --cfg ./configs/gta2cityscapes_mapillary_mdis.yml

To train the Multi-Target Knowledge Transfer framework:

$ cd <root_dir>/mtaf/scripts
$ python train.py --cfg ./configs/gta2cityscapes_mapillary_mtkt.yml

Testing

To test the multi-target baseline:

$ cd <root_dir>/mtaf/scripts
$ python test.py --cfg ./configs/gta2cityscapes_mapillary_baseline.yml

To test the Multi-Discriminator framework:

$ cd <root_dir>/mtaf/scripts
$ python test.py --cfg ./configs/gta2cityscapes_mapillary_mdis.yml

To test the Multi-Target Knowledge Transfer framework:

$ cd <root_dir>/mtaf/scripts
$ python test.py --cfg ./configs/gta2cityscapes_mapillary_mtkt.yml

Acknowledgements

This codebase is heavily borrowed from ADVENT.

License

MTAF is released under the Apache 2.0 license.

Comments
  • question about adversarial training code in train_UDA.py

    question about adversarial training code in train_UDA.py

    Thank you for sharing the code for your excellent work. I have some basic questions about your implementation. pred_trg_main = interp_target(all_pred_trg_main[i+1]) ## what does [i+1] mean? pred_trg_main_list.append(pred_trg_main) pred_trg_target = interp_target(all_pred_trg_main[0]) ## what does [0] mean? pred_trg_target_list.append(pred_trg_target)

    In train_UDA.py, line 829-836, why should we use index[i+1] and [0]? What's the meaning of that? Also, where is the definition of the target-agnostic classifier in your code?

    Thanks again and look forward to hearing back from you!

    opened by yuzhang03 2
  • the problem for training loss

    the problem for training loss

    Thanks for enlightening work agian.

    I train the Mdis method for one source and one target, but I am confused for the loss, and I plot by tensorboard. And as I think, the adv loss should walk low and the discrimitor loss should walk higher. but in the loss below, the two losses oscillate around a number. whats wrong with it?

    Besides, I infer the training results should be better when training in manner of 1source 1target instead of 1source multi target. But in my training, I dont get good results.

    So hope your thought sincerely.

    And my training config: adv loss weight: 0.5 adv learning rate: 1e-5 seg learning rate: 1.25e-5

    adversarial loss of one source and one target
    image

    dicriminator loss of one source and one target image

    opened by slz929 2
  • problem for training data

    problem for training data

    Thanks for enlightening and practical work about multi-target DA ! I have read your paper, and I found one source dataset and 3 target datasets of unequal quantity, does the quantity of data for every domain matters? And what is the appropriate amount of training data for MTKT? Another question, I want to know why KL loss is used for knowledge transfer? If I want to train an embedding word instead of a segmentation map, is the KL loss appropriate, and is there a better alternative?

    opened by slz929 2
  • About the generation of segmentation color maps

    About the generation of segmentation color maps

    Thanks for the great research!

    I have a question though, the mIoU you report in your paper is for 7 classes, but the segmentation colour map in the qualitative analysis seems to be for the 19 classes commonly used in domain adaptive semantic segmentation.

    In other words, how can a model trained on 7 classes be used to generate a 19-class segmentation colour map? Or am I wrong in my understanding?

    I look forward to your response.

    Thank you!

    opened by liwei1101 1
  • About labels of IDD dataset

    About labels of IDD dataset

    Hello! @SportaXD Thank you for your great work!

    I was reproducing the code and noticed: the labels in the IDD dataset are in JSON file format instead of segmentation label form.

    How is this problem solved?

    opened by liwei1101 1
  • About MTKT code

    About MTKT code

    In train_UDA.py 758 line

            d_main_list[i] = d_main
            optimizer_d_main_list.append(optimizer_d_main)
            d_aux_list[i] = d_aux
            optimizer_d_aux_list.append(optimizer_d_aux)
    

    If this were done(d_main_list[i] = d_main and d_aux_list[i] = d_aux), it would make all the discriminators in the list use the same one, shouldn't there be one discriminator for each classifier?

    opened by liwei1101 1
  • About 'the multi-target baseline'

    About 'the multi-target baseline'

    Thank you for sharing the code for your excellent work. I have some basic questions about your implementation.

    d_main = get_fc_discriminator(num_classes=num_classes)
    d_main.train()
    d_main.to(device)
    d_aux = get_fc_discriminator(num_classes=num_classes)
    d_aux.train()
    d_aux.to(device)
    

    Can you tell me why the multi-domain baseline code does not use multiple discriminators but only one discriminator. It looks like a single domain approach. Thanks!

    opened by liwei1101 1
  • about eval_UDA.py

    about eval_UDA.py

    Thanks for sharing your codes.

    I was impressed with your good research.

    Could you explain why the output map is not resized for target size(cfg.TEST.OUTPUT_SIZE_TARGET) in the case of Mapillary dataset in line 57 of eval_UDA.py?

    When I tested the trained model on Mapillary dataset, inference took a long time due to the large resolution.

    I'm looking forward to hearing from you.

    Thank you!

    opened by jdg900 1
  • modifying info7class.json and train_UDA.py

    modifying info7class.json and train_UDA.py

    we have found a small bug in "./MTAF/mtaf/dataset/cityscapes_list/info7class.json". valeo

    It should be 7 Classes rather than 19 Classes in the configuration file. It appears in the Evaluation stage, where the result is printed out in the mIoU evaluation metrics and the names of the 7 classes.

    Also, there is a typo in the comments.

    opened by mohamedelmesawy 1
  • Running MTAF on a slightly different setup

    Running MTAF on a slightly different setup

    Hello, thanks for sharing the code and such a good contribution. I would like to run your method on a setup that is a bit different, specifically adapting from Cityscapes ---> BDD, Mapillary. I have seen that the code accepts Cityscapes for both source and target, so that shouldnt be a problem, and I have added a dataloader for BDD to be the target 1.

    In order to get the best performance, do I need to train the baseline and then train the method using MTKT or MDIS loading the baseline as pretrained? Or do I get the best performance directly by running the training script for MTKT or MDIS without the baseline?

    opened by fabriziojpiva 1
Owner
Valeo.ai
The GitHub account of Valeo.ai
Valeo.ai
💊 A 3D Generative Model for Structure-Based Drug Design (NeurIPS 2021)

A 3D Generative Model for Structure-Based Drug Design Coming soon... Citation @inproceedings{luo2021sbdd, title={A 3D Generative Model for Structu

Shitong Luo 118 Jan 05, 2023
SuperSDR: multiplatform KiwiSDR + CAT transceiver integrator

SuperSDR SuperSDR integrates a realtime spectrum waterfall and audio receive from any KiwiSDR around the world, together with a local (or remote) cont

Marco Cogoni 30 Nov 29, 2022
Creating predictive checklists from data using integer programming.

Learning Optimal Predictive Checklists A Python package to learn simple predictive checklists from data subject to customizable constraints. For more

Healthy ML 5 Apr 19, 2022
Implementing DeepMind's Fast Reinforcement Learning paper

Fast Reinforcement Learning This is a repo where I implement the algorithms in the paper, Fast reinforcement learning with generalized policy updates.

Marcus Chiam 6 Nov 28, 2022
The story of Chicken for Club Bing

Chicken Story tl;dr: The time when Microsoft banned my entire country for cheating at Club Bing. (A lot of the details are from memory so I've recreat

Eyal 142 May 16, 2022
Image classification for projects and researches

This is a tool to help you quickly solve classification problems including: data analysis, training, report results and model explanation.

Nguyễn Trường Lâu 2 Dec 27, 2021
Align and Prompt: Video-and-Language Pre-training with Entity Prompts

ALPRO Align and Prompt: Video-and-Language Pre-training with Entity Prompts [Paper] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H

Salesforce 127 Dec 21, 2022
nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.

nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures. Here you will find the scripts necessary to produce th

Jesse Willis 0 Jan 20, 2022
Project page for End-to-end Recovery of Human Shape and Pose

End-to-end Recovery of Human Shape and Pose Angjoo Kanazawa, Michael J. Black, David W. Jacobs, Jitendra Malik CVPR 2018 Project Page Requirements Pyt

1.4k Dec 29, 2022
🍅🍅🍅YOLOv5-Lite: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size is 320×320~

YOLOv5-Lite:lighter, faster and easier to deploy Perform a series of ablation experiments on yolov5 to make it lighter (smaller Flops, lower memory, a

pogg 1.5k Jan 05, 2023
基于AlphaPose的TensorRT加速

1. Requirements CUDA 11.1 TensorRT 7.2.2 Python 3.8.5 Cython PyTorch 1.8.1 torchvision 0.9.1 numpy 1.17.4 (numpy版本过高会出报错 this issue ) python-package s

52 Dec 06, 2022
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis

WASP2 (Currently in pre-development): Allele-specific pipeline for unbiased read mapping(WIP), QTL discovery(WIP), and allelic-imbalance analysis Requ

McVicker Lab 2 Aug 11, 2022
maximal update parametrization (µP)

Maximal Update Parametrization (μP) and Hyperparameter Transfer (μTransfer) Paper link | Blog link In Tensor Programs V: Tuning Large Neural Networks

Microsoft 694 Jan 03, 2023
Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022
Code for "Long Range Probabilistic Forecasting in Time-Series using High Order Statistics"

Long Range Probabilistic Forecasting in Time-Series using High Order Statistics This is the code produced as part of the paper Long Range Probabilisti

16 Dec 06, 2022
The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".

3D Human Pose Estimation with Spatial and Temporal Transformers This repo is the official implementation for 3D Human Pose Estimation with Spatial and

Ce Zheng 363 Dec 28, 2022
MAg: a simple learning-based patient-level aggregation method for detecting microsatellite instability from whole-slide images

MAg Paper Abstract File structure Dataset prepare Data description How to use MAg? Why not try the MAg_lib! Trained models Experiment and results Some

Calvin Pang 3 Apr 08, 2022
Official Pytorch implementation of Meta Internal Learning

Official Pytorch implementation of Meta Internal Learning

10 Aug 24, 2022
Codes to calculate solar-sensor zenith and azimuth angles directly from hyperspectral images collected by UAV. Works only for UAVs that have high resolution GNSS/IMU unit.

UAV Solar-Sensor Angle Calculation Table of Contents About The Project Built With Getting Started Prerequisites Installation Datasets Contributing Lic

Sourav Bhadra 1 Jan 15, 2022