[ICLR 2021] Is Attention Better Than Matrix Decomposition?

Overview

Enjoy-Hamburger 🍔

Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021)

Under construction.

Introduction

This repo provides the official implementation of Hamburger for further research. We sincerely hope that this paper can bring you inspiration about the Attention Mechanism, especially how the low-rankness and the optimization-driven method can help model the so-called Global Information in deep learning.

We model the global context issue as a low-rank completion problem and show that its optimization algorithms can help design global information blocks. This paper then proposes a series of Hamburgers, in which we employ the optimization algorithms for solving MDs to factorize the input representations into sub-matrices and reconstruct a low-rank embedding. Hamburgers with different MDs can perform favorably against the popular global context module self-attention when carefully coping with gradients back-propagated through MDs.

contents

We are working on some exciting topics. Please wait for our new papers!

Enjoy Hamburger, please!

Organization

This section introduces the organization of this repo.

We strongly recommend the readers to read the blog (incoming soon) as a supplement to the paper!

  • blog.
    • Some random thoughts about Hamburger and beyond.
    • Possible directions based on Hamburger.
    • FAQ.
  • seg.
    • We provide the PyTorch implementation of Hamburger (V1) in the paper and an enhanced version (V2) flavored with Cheese. Some experimental features are included in V2+.
    • We release the codebase for systematical research on the PASCAL VOC dataset, including the two-stage training on the trainaug and trainval datasets and the MSFlip test.
    • We offer three checkpoints of HamNet, in which one is 85.90+ with the test server link, while the other two are 85.80+ with the test server link 1 and link 2. You can reproduce the test results using the checkpoints combined with the MSFlip test code.
    • Statistics about HamNet that might ease further research.
  • gan.
    • Official implementation of Hamburger in TensorFlow.
    • Data preprocessing code for using ImageNet in tensorflow-datasets. (Possibly useful if you hope to run the JAX code of BYOL or other ImageNet training code with the Cloud TPUs.)
    • Training and evaluation protocol of HamGAN on the ImageNet.
    • Checkpoints of HamGAN-strong and HamGAN-baby.

TODO:

  • README doc for HamGAN.
  • PyTorch Hamburger with less encapsulation.
  • Suggestions for using and further developing Hamburger.
  • Blog in both English and Chinese.
  • We also consider adding a collection of popular context modules to this repo. It depends on the time. No Guarantee. Perhaps GuGu 🕊️ (which means standing someone up).

Citation

If you find our work interesting or helpful to your research, please consider citing Hamburger. :)

@inproceedings{
    ham,
    title={Is Attention Better Than Matrix Decomposition?},
    author={Zhengyang Geng and Meng-Hao Guo and Hongxu Chen and Xia Li and Ke Wei and Zhouchen Lin},
    booktitle={International Conference on Learning Representations},
    year={2021},
}

Contact

Feel free to contact me if you have additional questions or have interests in collaboration. Please drop me an email at [email protected]. Find me at Twitter. Thank you!

Response to recent emails may be slightly delayed to March 26th due to the deadlines of ICLR. I feel sorry, but people are always deadline-driven. QAQ

Acknowledgments

Our research is supported with Cloud TPUs from Google's Tensorflow Research Cloud (TFRC). Nice and joyful experience with the TFRC program. Thank you!

We would like to sincerely thank EMANet, PyTorch-Encoding, YLG, and TF-GAN for their awesome released code.

Owner
Gsunshine
Gsunshine
Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'

Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs

5 Jul 01, 2022
Sign-to-Speech for Sign Language Understanding: A case study of Nigerian Sign Language

Sign-to-Speech for Sign Language Understanding: A case study of Nigerian Sign Language This repository contains the code, model, and deployment config

16 Oct 23, 2022
MM1 and MMC Queue Simulation using python - Results and parameters in excel and csv files

implementation of MM1 and MMC Queue on randomly generated data and evaluate simulation results then compare with analytical results and draw a plot curve for them, simulate some integrals and compare

Mohamadreza Rezaei 1 Jan 19, 2022
Python implementation of O-OFDMNet, a deep learning-based optical OFDM system,

O-OFDMNet This includes Python implementation of O-OFDMNet, a deep learning-based optical OFDM system, which uses neural networks for signal processin

Thien Luong 4 Sep 09, 2022
House_prices_kaggle - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

Gurpreet Singh 1 Jan 01, 2022
CVPR 2021 Challenge on Super-Resolution Space

Learning the Super-Resolution Space Challenge NTIRE 2021 at CVPR Learning the Super-Resolution Space challenge is held as a part of the 6th edition of

andreas 104 Oct 26, 2022
details on efforts to dump the Watermelon Games Paprium cart

Reminder, if you like these repos, fork them so they don't disappear https://github.com/ArcadeHustle/WatermelonPapriumDump/fork Big thanks to Fonzie f

Hustle Arcade 29 Dec 11, 2022
STEAL - Learning Semantic Boundaries from Noisy Annotations (CVPR 2019)

STEAL This is the official inference code for: Devil Is in the Edges: Learning Semantic Boundaries from Noisy Annotations David Acuna, Amlan Kar, Sanj

469 Dec 26, 2022
PyTorch reimplementation of the Smooth ReLU activation function proposed in the paper "Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations" [arXiv 2022].

Smooth ReLU in PyTorch Unofficial PyTorch reimplementation of the Smooth ReLU (SmeLU) activation function proposed in the paper Real World Large Scale

Christoph Reich 10 Jan 02, 2023
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Ibai Gorordo 14 Dec 09, 2022
Tool for installing and updating MiSTer cores and other files

MiSTer Downloader This tool installs and updates all the cores and other extra files for your MiSTer. It also updates the menu core, the MiSTer firmwa

72 Dec 24, 2022
An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Uformer: A General U-Shaped Transformer for Image Restoration Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu Paper: https://arxiv.org/abs

Zhendong Wang 497 Dec 22, 2022
A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching.

LPM_Python A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching. The code is established ac

AoxiangFan 11 Nov 07, 2022
Official PyTorch Implementation of GAN-Supervised Dense Visual Alignment

GAN-Supervised Dense Visual Alignment — Official PyTorch Implementation Paper | Project Page | Video This repo contains training, evaluation and visua

944 Jan 07, 2023
Pywonderland - A tour in the wonderland of math with python.

A Tour in the Wonderland of Math with Python A collection of python scripts for drawing beautiful figures and animating interesting algorithms in math

Zhao Liang 4.1k Jan 03, 2023
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 36 Oct 31, 2022
Auto-Encoding Score Distribution Regression for Action Quality Assessment

DAE-AQA It is an open source program reference to paper Auto-Encoding Score Distribution Regression for Action Quality Assessment. 1.Introduction DAE

13 Nov 16, 2022
Code for our TKDE paper "Understanding WeChat User Preferences and “Wow” Diffusion"

wechat-wow-analysis Understanding WeChat User Preferences and “Wow” Diffusion. Fanjin Zhang, Jie Tang, Xueyi Liu, Zhenyu Hou, Yuxiao Dong, Jing Zhang,

18 Sep 16, 2022
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urba

Yu Tian 115 Dec 29, 2022
Learning cell communication from spatial graphs of cells

ncem Features Repository for the manuscript Fischer, D. S., Schaar, A. C. and Theis, F. Learning cell communication from spatial graphs of cells. 2021

Theis Lab 77 Dec 30, 2022