A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.

Overview

NimTorch

Master Release
Build Status Build Status

Pytorch - Py + Nim

A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.

Because Nim compiles to C++, this is not a wrapper or binding library. It generates 1-to-1 native ATen code.

The only requirement from pytorch is ATen's core tensor library. Because of this, nimtorch is extremely versatile and can compile on any kind of device.

Current status

Early stage

  • Automatically generated, from Declarations.yaml, the full ATen API
  • Cuda support ( add -d:cuda when compiling with nim )
  • WASM support ( add -d:wasm when compiling with nim )
  • Automatically generated, from derivatives.yaml, gradient procs
  • Autograd
  • Add missing derivatives
  • More high level pytorch API (Module, Models etc)
  • ...

The final aim is to be as compatible as possible with the pytorch API.

Why

Ease of use of the python language while keeping fully bare metal native C++ performance

Python code

# GRUCell
gi = x.matmul(w_input.t()) + b_input
gh = hidden.matmul(w_recur.t()) + b_recur
i_r, i_i, i_n = gi.chunk(3, 1)
h_r, h_i, h_n = gh.chunk(3, 1)
resetgate = (i_r + h_r).sigmoid()
inputgate = torch.sigmoid(i_i + h_i)
newgate = (i_n + resetgate * h_n).tanh()
hy = newgate + inputgate * (hidden - newgate)

Nim code

# GRUCell
let
  gi = x.matmul(w_input.t()) + b_input
  gh = hidden.matmul(w_recur.t()) + b_recur
  (i_r, i_i, i_nn) = gi.chunk(3, 1)
  (h_r, h_i, h_n)  = gh.chunk(3, 1)
  resetgate = (i_r + h_r).sigmoid()
  inputgate = torch.sigmoid(i_i + h_i)
  newgate = (i_nn + resetgate * h_n).tanh()
  hy = newgate + inputgate * (hidden - newgate)

Getting started

Requirements

Linux: A recent distribution on par with ubuntu 18.04 in terms of libc and basic libraries, gcc compiler

macOS: We compile with 10.13 min version flags but might work even on lower versions, XCode for the compilers

Windows: Windows 10, Visual Studio Runtime 2017 and Visual Studio 2017 (any edition)

WASM: Latest Emscripten compiler and tools

Super easy, using conda

Linux, macOS and Windows

conda create -n nimtorch -c fragcolor nimtorch (add cuda10.0 for cuda 10 linux only or add wasm for wasm version)

source activate nimtorch or on windows: conda activate nimtorch

This will install: nim and ATen binaries, fragments and nimtorch all in one command, nothing else needed.

Make sure you use a recent version of conda and have a compiler installed in your system, on windows you have to add --cc:vcc and be on a developer prompt.

Make sure your system is recent (ubuntu 18.04 reference / macOS High Sierra / Windows 10) and you have cuda 9.2 installed (if you need cuda, linux only, more cuda versions coming, please open a issue if you need a specific version).

Test with with something like:

nim cpp -o:test -r $ATEN/dist/pkgs/nimtorch-\#head/tests/test_xor.nim

or on windows... (because dlls need to be side by side)

nim cpp -o:%ATEN%/lib/test.exe -r %ATEN%/dist/pkgs/nimtorch-#head/tests/test_xor.nim

Semi manual way

Linux, macOS and Windows

Check what version of ATen/PyTorch we need in conda/nimtorch/meta.yaml - should be something like aten ==2018.10.10.1089

Note the version as you will need it in the next step

conda create -n aten -c fragcolor aten={version}

or

WASM

conda create -n aten -c fragcolor aten={version} wasm

or Cuda 10.0 (linux only)

conda create -n aten -c fragcolor aten={version} cuda10.0

activate aten environment

source activate aten or on windows: conda activate aten

  1. Make sure you have a recent Nim and Nimble version in your path
  1. clone the release branch git clone -b release https://github.com/fragcolor-xyz/nimtorch.git
  2. cd nimtorch
  3. nimble develop

finally

run self test nim cpp -o:test -r torch.nim (use -o:%ATEN%/lib/test.exe instead on windows because of dll location)

in the case of WASM:

run self test nim cpp -d:wasm -o:test.js torch.nim && node test.js (needs node.js)

Manual way without requiring conda

Build ATEN

pip2 install pyyaml typing
git clone -b fragcolor-devel https://github.com/fragcolor-xyz/pytorch.git
cd pytorch
git reset --hard <commit hash> # from torch/commit.txt
git submodule update --init
mkdir build && cd build
cmake -DCMAKE_BUILD_TYPE=Release -DUSE_CUDA=OFF -DBUILD_ATEN_ONLY=ON -DCMAKE_INSTALL_PREFIX=`pwd`/output ../
make -j4
make install

# also copy derivatives if we want to run generator.nim or nimble test
# notice generator.nim might need python3 and pyyaml
cp ../tools/autograd/derivatives.yaml `pwd`/output/share/

Test the build

cd 
   
    
ATEN=
    
      nim cpp -r -f -o:/tmp/z01 torch.nim # for eg: ATEN=pathto/pytorch/build/output/

    
   

Notes

  • We suggest setting OMP_WAIT_POLICY environment variable to PASSIVE when running on CPU.
Comments
  • OSX: `nim cpp -r torch.nim` fails

    OSX: `nim cpp -r torch.nim` fails

    after building ATEN via https://github.com/fragcolor-xyz/nimtorch/issues/5#issuecomment-427937945:

    ATEN=/tmp/d11/Users/timothee/git_clone/nim/pytorch/built/output/lib nim cpp -r torch.nim
    error: unknown type name 'constexpr'
    
    ATEN=/tmp/d11/Users/timothee/git_clone/nim/pytorch/built/output nim cpp -r --passC:-std=c++11 torch.nim
    /Users/timothee/.cache/nim/torch_d/torch_tensors.cpp:206:14: error: no matching constructor for initialization of 'at::IntList' (aka 'ArrayRef<long long>')
            at::IntList temp(((long*) ((&self[((NI) 0)]))), selfLen_0);
                        ^    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    /tmp/d11/Users/timothee/git_clone/nim/pytorch/built/output/include/ATen/core/ArrayRef.h:67:13: note: candidate constructor not viable: no known conversion from 'long *' to 'const long long *' for 1st argument
      constexpr ArrayRef(const T* data, size_t length)
    
    
    question macOS 
    opened by timotheecour 11
  • OSX: building ATEN via `docker build -t docker_aten_native .` fails

    OSX: building ATEN via `docker build -t docker_aten_native .` fails

    Download ATen binaries or build it (instructions under)

    => no OSX option

    ATen build instructions

    cd docker && cd docker-aten-native

    is that a typo?

    is my best bet to try to follow instructions from https://github.com/pytorch/pytorch or https://github.com/pytorch/pytorch/tree/master/aten ?

    enhancement macOS 
    opened by timotheecour 11
  • SIGSEGV when running examples

    SIGSEGV when running examples

    Using the latest nimtorch, I'm getting a SIGSEGV when trying to compile one of the examples (test_xor).

    I'm not sure if this is a compiler bug or a problem with Aten?

    Dockerfile:

    FROM continuumio/miniconda
    
    RUN conda install -y -c fragcolor nimtorch
    
    ADD test.nim .
    
    docker build -t nimtorch_conda .
    docker run --rm nimtorch_conda nim c test.nim
    #Hint: used config file '/opt/conda/config/nim.cfg' [Conf]
    #Hint: used config file '/opt/conda/config/config.nims' [Conf]
    #Hint: system [Processing]
    #Hint: widestrs [Processing]
    #Hint: io [Processing]
    #Hint: test [Processing]
    #Hint: torch [Processing]
    #Hint: macros [Processing]
    #Hint: cpp [Processing]
    #Hint: nimline [Processing]
    #Hint: tables [Processing]
    #Hint: hashes [Processing]
    #Hint: strutils [Processing]
    #Hint: parseutils [Processing]
    #Hint: math [Processing]
    #Hint: bitops [Processing]
    #Hint: algorithm [Processing]
    #Hint: unicode [Processing]
    #Hint: os [Processing]
    #Hint: pathnorm [Processing]
    #Hint: osseps [Processing]
    #Hint: posix [Processing]
    #Hint: times [Processing]
    #Hint: options [Processing]
    #Hint: typetraits [Processing]
    #Hint: torch_cpp [Processing]
    #Hint: tensors [Processing]
    #Hint: sequtils [Processing]
    #Hint: sets [Processing]
    #Hint: strformat [Processing]
    #Hint: tensor_ops [Processing]
    #Hint: autograd_macro [Processing]
    #Hint: autograd_backward [Processing]
    #Hint: nn [Processing]
    #Hint: modules [Processing]
    #Hint: init [Processing]
    #Hint: python_helpers [Processing]
    #Hint: functional [Processing]
    #SIGSEGV: Illegal storage access. (Attempt to read from nil?)
    

    test.nim:

    import torch
    import torch/[nn, optim]
    
    let inputs = torch.tensor([
      [0.0, 0.0],
      [0.0, 1.0],
      [1.0, 0.0],
      [1.0, 1.0],
    ])
    
    let targets = torch.tensor([
      [0.0],
      [1.0],
      [1.0],
      [0.0],
    ])
    
    let
      fc1 = nn.Linear(2, 4)
      fc2 = nn.Linear(4, 1)
      loss_fn = nn.MSELoss()
      optimizer = optim.SGD(fc1.parameters & fc2.parameters , lr = 0.01, momentum = 0.1)
    
    set_num_threads(1)
    
    when defined gperftools:
      discard ProfilerStart("test_xor.log")
    
    for i in 0 ..< 50000:
      optimizer.zero_grad()
    
      let predictions = inputs.fc1.relu.fc2.sigmoid
    
      let loss = loss_fn(predictions, targets)
      loss.backward()
      optimizer.step()
    
      if i mod 5000 == 0:
        print(loss)
    
    when defined gperftools:
      ProfilerStop()
    
    opened by singularperturbation 4
  • can't install with nimble

    can't install with nimble

    $ nim --version Nim Compiler Version 0.18.1 [Windows: amd64] Compiled at 2018-08-18 Copyright (c) 2006-2018 by Andreas Rumpf

    git hash: b5171f57ef00bffb12387d7daf3487c5e07645f9 active boot switches: -d:release

    $ nimble install nimtorch Prompt: nimtorch not found in any local packages.json, check internet for updated packages? [y/N] y Answer: Downloading Official package list Success Package list downloaded. Tip: 3 messages have been suppressed, use --verbose to show them. Error: Package not found.

    opened by retsyo 3
  • Cannot compile nimtorch tests on Windows 10

    Cannot compile nimtorch tests on Windows 10

    C:/Program Files/mingw-w64/x86_64-8.1.0-posix-seh-rt_v6-rev0/mingw64/bin/../lib/gcc/x86_64-w64-mingw32/8.1.0/../../../../x86_64-w64-mingw32/bin/ld.exe: cannot find -lC:\Users\vsagar200\work\bin\nim-0.19.0_x64\ATen-windows10-cpu\lib\ATen_cpu.lib
    C:/Program Files/mingw-w64/x86_64-8.1.0-posix-seh-rt_v6-rev0/mingw64/bin/../lib/gcc/x86_64-w64-mingw32/8.1.0/../../../../x86_64-w64-mingw32/bin/ld.exe: cannot find -lC:\Users\vsagar200\work\bin\nim-0.19.0_x64\ATen-windows10-cpu\lib\cpuinfo.lib
    collect2.exe: error: ld returned 1 exit status
    Error: execution of an external program failed: 'g++.exe   -o C:\Users\vsagar200\work\soft\nimtorch\tests\test_xor.exe  C:\Users\vsagar200\nimcache\test_xor_d\torch_test_xor.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_system.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\torch_torch.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\fragments_cpp.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_macros.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_tables.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_hashes.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_math.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_strutils.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_parseutils.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_bitops.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_algorithm.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_unicode.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_ospaths.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_winlean.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_dynlib.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\torch_torch_cpp.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_os.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_times.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_options.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_typetraits.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_strformat.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\torch_tensors.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_sequtils.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_sets.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\torch_tensor_ops.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\torch_autograd_macro.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\torch_autograd_backward.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\torch_nn.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\torch_init.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\torch_python_helpers.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\torch_optim.cpp.o  -LC:\Users\vsagar200\work\bin\nim-0.19.0_x64\ATen-windows10-cpu\lib -LC:\Users\vsagar200\work\bin\nim-0.19.0_x64\ATen-windows10-cpu\lib64 -lC:\Users\vsagar200\work\bin\nim-0.19.0_x64\ATen-windows10-cpu\lib\ATen_cpu.lib -lC:\Users\vsagar200\work\bin\nim-0.19.0_x64\ATen-windows10-cpu\lib\cpuinfo.lib '
    

    Although the ATEN path is correctly set. Tried on nim 0.18.1 and 0.19.0 the .lib files present at the same location the error is saying it cannot find.

    question 
    opened by eshitasagar 2
  • install Aten with nimtorch

    install Aten with nimtorch

    thanks for the library. are there any plans to have Aten distributed with nim-torch? This will make it easier to build command-line tools that depend on it.

    opened by brentp 1
  • [TODO] [offtopic] discussion regarding nimble limitation (from comments in #6)

    [TODO] [offtopic] discussion regarding nimble limitation (from comments in #6)

    moved to here the discussion started here https://github.com/fragcolor-xyz/nimtorch/issues/6#issuecomment-430511494 to keep each topic separate

    @sinkingsugar

    Nimble has a major flaw, which is it applies all the packages it has on every project you have by default. That's my major concern that easy can create a mess if not considered.

    I will give you an example exactly with nimtorch: Have nimtorch installed as nimble package Also work on the repository Did not run nimble develop Rename a file in the repository Forget to update the module import myrenamedfile into import newlocation/myrenamedfile Build will succeed yet will use import myrenamedfile from nimble this time..

    but it all works if you run nimble develop, right? I think that's expected and I don't see a limitation here (in the sense of making it impossible to do certain things). if you really feel something is ill-designed with nimble it really should be a bug report in https://github.com/nim-lang/nimble/issues/ otherwise it will never get fixed (if there's anything to fix).

    That being said, one possibility would be (and that's doable, not a fundamental flaw IMO): if you call nimble build inside a local package foo, nimble could remove from search path an installed package named foo

    opened by timotheecour 1
  • Add a Gitter chat badge to README.md

    Add a Gitter chat badge to README.md

    fragcolor-xyz/nimtorch now has a Chat Room on Gitter

    @sinkingsugar has just created a chat room. You can visit it here: https://gitter.im/nimtorch/Lobby.

    This pull-request adds this badge to your README.md:

    Gitter

    If my aim is a little off, please let me know.

    Happy chatting.

    PS: Click here if you would prefer not to receive automatic pull-requests from Gitter in future.

    opened by gitter-badger 0
  • Is this project still active

    Is this project still active

    Hi,

    I think a working binding to pytorch from nim could be very valuable to support the use of nim in data science. This project seems to be inactive for a long time now and it is not using the current version of pytorch - any chance that it will be updated?

    opened by bitstormFA 5
  • Question. Import model trained under a Python / Torch library.

    Question. Import model trained under a Python / Torch library.

    Would it be possible or even advisable to import a pth or pkl, which was trained using FastAI, into NimTorch, for the purpose of exposing in a backend written in Nim (for efficiency and speed)?

    opened by UNIcodeX 17
  • Add

    Add "install fragments" to the non-conda installation doc

    add nimble install fragments to this part of the readme As a beginner I wasted an hour trying to figure out what did I do wrong, turns out it was just a package error

    opened by mritunjaymusale 0
  • Error: expression 'step(optimizer)' has no type (or is ambiguous)

    Error: expression 'step(optimizer)' has no type (or is ambiguous)

    I am trying to use nimtorch (I am new to pytorch as well). I am struggling to run a first example.

    I have installed in Windows 10 like this:

    conda create -n aten -c fragcolor aten=2019.02.16.2841
    nimble install fragments
    nimble install torch@#head
    

    And then I tried to compile the code from here:

    import torch
    import torch/[nn, optim]
    
    let
      inputs = torch.tensor([[0.0, 0.0], [0.0, 1.0], [1.0, 0.0], [1.0, 1.0]])
      targets = torch.tensor([[0.0], [1.0], [1.0], [0.0]])
    
    let
      fc1 = nn.Linear(2, 4)
      fc2 = nn.Linear(4, 1)
      loss_fn = nn.MSELoss()
      optimizer = optim.SGD(fc1.parameters & fc2.parameters, lr = 0.01, momentum = 0.1)
    
    for i in 0 ..< 50000:
      optimizer.zero_grad()
    
      var predictions = fc1(inputs).relu()
      predictions = fc2(predictions).sigmoid()
    
      let loss = loss_fn(predictions, targets)
      loss.backward()
      discard optimizer.step()
    
      if i mod 5000 == 0:
        print(loss)
    

    I compile by doing:

    c:> conda activate aten
    c.> nim cpp ex01
    ....
    C:\Users\mantielero\Documents\src\torch\ex01.nim(22, 25) Error: expression 'step(optimizer)' has no type (or is ambiguous)
    

    which is the line:

    discard optimizer.step()
    

    What am I doing wrong?

    opened by mantielero 0
  • Nimble installation fails

    Nimble installation fails

    Its been a while since the last commit, pls dont tell me nimtorch is dead, its wonderful, and i want to start using it, and libraries like this would pump up nim's popularity, are you leaving it for a while but planning on taking it back or just completely abandoned?

    opened by RecruitMain707 6
Releases(v0.2.0)
Owner
Giovanni Petrantoni
Founder and CEO @ Fragcolor
Giovanni Petrantoni
Simultaneous Detection and Segmentation

Simultaneous Detection and Segmentation This is code for the ECCV Paper: Simultaneous Detection and Segmentation Bharath Hariharan, Pablo Arbelaez,

Bharath Hariharan 96 Jul 20, 2022
Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.

Modeling High-Frequency Limit Order Book Dynamics Using Machine Learning Framework to capture the dynamics of high-frequency limit order books. Overvi

Chang-Shu Chung 1.3k Jan 07, 2023
Algorithmic trading using machine learning.

Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto

Sourav Biswas 101 Nov 10, 2022
An implementation of Deep Forest 2021.2.1.

Deep Forest (DF) 21 DF21 is an implementation of Deep Forest 2021.2.1. It is designed to have the following advantages: Powerful: Better accuracy than

LAMDA Group, Nanjing University 795 Jan 03, 2023
Rafael Project- Classifying rockets to different types using data science algorithms.

Rocket-Classify Rafael Project- Classifying rockets to different types using data science algorithms. In this project we received data base with data

Hadassah Engel 5 Sep 18, 2021
A general and strong 3D object detection codebase that supports more methods, datasets and tools (debugging, recording and analysis).

ALLINONE-Det ALLINONE-Det is a general and strong 3D object detection codebase built on OpenPCDet, which supports more methods, datasets and tools (de

Michael.CV 5 Nov 03, 2022
Parameterized Explainer for Graph Neural Network

PGExplainer This is a Tensorflow implementation of the paper: Parameterized Explainer for Graph Neural Network https://arxiv.org/abs/2011.04573 NeurIP

Dongsheng Luo 89 Dec 12, 2022
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
Python implementation of O-OFDMNet, a deep learning-based optical OFDM system,

O-OFDMNet This includes Python implementation of O-OFDMNet, a deep learning-based optical OFDM system, which uses neural networks for signal processin

Thien Luong 4 Sep 09, 2022
PyTorch implementation of SimSiam: Exploring Simple Siamese Representation Learning

SimSiam: Exploring Simple Siamese Representation Learning This is a PyTorch implementation of the SimSiam paper: @Article{chen2020simsiam, author =

Facebook Research 834 Dec 30, 2022
Fully Automatic Page Turning on Real Scores

Fully Automatic Page Turning on Real Scores This repository contains the corresponding code for our extended abstract Henkel F., Schwaiger S. and Widm

Florian Henkel 7 Jan 02, 2022
Torch-ngp - A pytorch implementation of the hash encoder proposed in instant-ngp

HashGrid Encoder (WIP) A pytorch implementation of the HashGrid Encoder from ins

hawkey 1k Jan 01, 2023
The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text"

Finnish Dialect Identification The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text". We present a te

Rootroo Ltd 2 Dec 25, 2021
Transfer Learning library for Deep Neural Networks.

Transfer and meta-learning in Python Each folder in this repository corresponds to a method or tool for transfer/meta-learning. xfer-ml is a standalon

Amazon 245 Dec 08, 2022
DIT is a DTLS MitM proxy implemented in Python 3. It can intercept, manipulate and suppress datagrams between two DTLS endpoints and supports psk-based and certificate-based authentication schemes (RSA + ECC).

DIT - DTLS Interception Tool DIT is a MitM proxy tool to intercept DTLS traffic. It can intercept, manipulate and/or suppress DTLS datagrams between t

52 Nov 30, 2022
Boundary IoU API (Beta version)

Boundary IoU API (Beta version) Bowen Cheng, Ross Girshick, Piotr Dollár, Alexander C. Berg, Alexander Kirillov [arXiv] [Project] [BibTeX] This API is

Bowen Cheng 177 Dec 29, 2022
This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach.

PlyTitle_Generation This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach. The paper has been accepted by

SeungHeonDoh 6 Jan 03, 2022
Repository for benchmarking graph neural networks

Benchmarking Graph Neural Networks Updates Nov 2, 2020 Project based on DGL 0.4.2. See the relevant dependencies defined in the environment yml files

NTU Graph Deep Learning Lab 2k Jan 03, 2023
CAST: Character labeling in Animation using Self-supervision by Tracking

CAST: Character labeling in Animation using Self-supervision by Tracking (Published as a conference paper at EuroGraphics 2022) Note: The CAST paper c

15 Nov 18, 2022
Pytorch implementation for "Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter".

Implicit Feature Alignment: Learn to Convert Text Recognizer to Text Spotter This is a pytorch-based implementation for paper Implicit Feature Alignme

wangtianwei 61 Nov 12, 2022