A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.

Overview

NimTorch

Master Release
Build Status Build Status

Pytorch - Py + Nim

A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.

Because Nim compiles to C++, this is not a wrapper or binding library. It generates 1-to-1 native ATen code.

The only requirement from pytorch is ATen's core tensor library. Because of this, nimtorch is extremely versatile and can compile on any kind of device.

Current status

Early stage

  • Automatically generated, from Declarations.yaml, the full ATen API
  • Cuda support ( add -d:cuda when compiling with nim )
  • WASM support ( add -d:wasm when compiling with nim )
  • Automatically generated, from derivatives.yaml, gradient procs
  • Autograd
  • Add missing derivatives
  • More high level pytorch API (Module, Models etc)
  • ...

The final aim is to be as compatible as possible with the pytorch API.

Why

Ease of use of the python language while keeping fully bare metal native C++ performance

Python code

# GRUCell
gi = x.matmul(w_input.t()) + b_input
gh = hidden.matmul(w_recur.t()) + b_recur
i_r, i_i, i_n = gi.chunk(3, 1)
h_r, h_i, h_n = gh.chunk(3, 1)
resetgate = (i_r + h_r).sigmoid()
inputgate = torch.sigmoid(i_i + h_i)
newgate = (i_n + resetgate * h_n).tanh()
hy = newgate + inputgate * (hidden - newgate)

Nim code

# GRUCell
let
  gi = x.matmul(w_input.t()) + b_input
  gh = hidden.matmul(w_recur.t()) + b_recur
  (i_r, i_i, i_nn) = gi.chunk(3, 1)
  (h_r, h_i, h_n)  = gh.chunk(3, 1)
  resetgate = (i_r + h_r).sigmoid()
  inputgate = torch.sigmoid(i_i + h_i)
  newgate = (i_nn + resetgate * h_n).tanh()
  hy = newgate + inputgate * (hidden - newgate)

Getting started

Requirements

Linux: A recent distribution on par with ubuntu 18.04 in terms of libc and basic libraries, gcc compiler

macOS: We compile with 10.13 min version flags but might work even on lower versions, XCode for the compilers

Windows: Windows 10, Visual Studio Runtime 2017 and Visual Studio 2017 (any edition)

WASM: Latest Emscripten compiler and tools

Super easy, using conda

Linux, macOS and Windows

conda create -n nimtorch -c fragcolor nimtorch (add cuda10.0 for cuda 10 linux only or add wasm for wasm version)

source activate nimtorch or on windows: conda activate nimtorch

This will install: nim and ATen binaries, fragments and nimtorch all in one command, nothing else needed.

Make sure you use a recent version of conda and have a compiler installed in your system, on windows you have to add --cc:vcc and be on a developer prompt.

Make sure your system is recent (ubuntu 18.04 reference / macOS High Sierra / Windows 10) and you have cuda 9.2 installed (if you need cuda, linux only, more cuda versions coming, please open a issue if you need a specific version).

Test with with something like:

nim cpp -o:test -r $ATEN/dist/pkgs/nimtorch-\#head/tests/test_xor.nim

or on windows... (because dlls need to be side by side)

nim cpp -o:%ATEN%/lib/test.exe -r %ATEN%/dist/pkgs/nimtorch-#head/tests/test_xor.nim

Semi manual way

Linux, macOS and Windows

Check what version of ATen/PyTorch we need in conda/nimtorch/meta.yaml - should be something like aten ==2018.10.10.1089

Note the version as you will need it in the next step

conda create -n aten -c fragcolor aten={version}

or

WASM

conda create -n aten -c fragcolor aten={version} wasm

or Cuda 10.0 (linux only)

conda create -n aten -c fragcolor aten={version} cuda10.0

activate aten environment

source activate aten or on windows: conda activate aten

  1. Make sure you have a recent Nim and Nimble version in your path
  1. clone the release branch git clone -b release https://github.com/fragcolor-xyz/nimtorch.git
  2. cd nimtorch
  3. nimble develop

finally

run self test nim cpp -o:test -r torch.nim (use -o:%ATEN%/lib/test.exe instead on windows because of dll location)

in the case of WASM:

run self test nim cpp -d:wasm -o:test.js torch.nim && node test.js (needs node.js)

Manual way without requiring conda

Build ATEN

pip2 install pyyaml typing
git clone -b fragcolor-devel https://github.com/fragcolor-xyz/pytorch.git
cd pytorch
git reset --hard <commit hash> # from torch/commit.txt
git submodule update --init
mkdir build && cd build
cmake -DCMAKE_BUILD_TYPE=Release -DUSE_CUDA=OFF -DBUILD_ATEN_ONLY=ON -DCMAKE_INSTALL_PREFIX=`pwd`/output ../
make -j4
make install

# also copy derivatives if we want to run generator.nim or nimble test
# notice generator.nim might need python3 and pyyaml
cp ../tools/autograd/derivatives.yaml `pwd`/output/share/

Test the build

cd 
   
    
ATEN=
    
      nim cpp -r -f -o:/tmp/z01 torch.nim # for eg: ATEN=pathto/pytorch/build/output/

    
   

Notes

  • We suggest setting OMP_WAIT_POLICY environment variable to PASSIVE when running on CPU.
Comments
  • OSX: `nim cpp -r torch.nim` fails

    OSX: `nim cpp -r torch.nim` fails

    after building ATEN via https://github.com/fragcolor-xyz/nimtorch/issues/5#issuecomment-427937945:

    ATEN=/tmp/d11/Users/timothee/git_clone/nim/pytorch/built/output/lib nim cpp -r torch.nim
    error: unknown type name 'constexpr'
    
    ATEN=/tmp/d11/Users/timothee/git_clone/nim/pytorch/built/output nim cpp -r --passC:-std=c++11 torch.nim
    /Users/timothee/.cache/nim/torch_d/torch_tensors.cpp:206:14: error: no matching constructor for initialization of 'at::IntList' (aka 'ArrayRef<long long>')
            at::IntList temp(((long*) ((&self[((NI) 0)]))), selfLen_0);
                        ^    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    /tmp/d11/Users/timothee/git_clone/nim/pytorch/built/output/include/ATen/core/ArrayRef.h:67:13: note: candidate constructor not viable: no known conversion from 'long *' to 'const long long *' for 1st argument
      constexpr ArrayRef(const T* data, size_t length)
    
    
    question macOS 
    opened by timotheecour 11
  • OSX: building ATEN via `docker build -t docker_aten_native .` fails

    OSX: building ATEN via `docker build -t docker_aten_native .` fails

    Download ATen binaries or build it (instructions under)

    => no OSX option

    ATen build instructions

    cd docker && cd docker-aten-native

    is that a typo?

    is my best bet to try to follow instructions from https://github.com/pytorch/pytorch or https://github.com/pytorch/pytorch/tree/master/aten ?

    enhancement macOS 
    opened by timotheecour 11
  • SIGSEGV when running examples

    SIGSEGV when running examples

    Using the latest nimtorch, I'm getting a SIGSEGV when trying to compile one of the examples (test_xor).

    I'm not sure if this is a compiler bug or a problem with Aten?

    Dockerfile:

    FROM continuumio/miniconda
    
    RUN conda install -y -c fragcolor nimtorch
    
    ADD test.nim .
    
    docker build -t nimtorch_conda .
    docker run --rm nimtorch_conda nim c test.nim
    #Hint: used config file '/opt/conda/config/nim.cfg' [Conf]
    #Hint: used config file '/opt/conda/config/config.nims' [Conf]
    #Hint: system [Processing]
    #Hint: widestrs [Processing]
    #Hint: io [Processing]
    #Hint: test [Processing]
    #Hint: torch [Processing]
    #Hint: macros [Processing]
    #Hint: cpp [Processing]
    #Hint: nimline [Processing]
    #Hint: tables [Processing]
    #Hint: hashes [Processing]
    #Hint: strutils [Processing]
    #Hint: parseutils [Processing]
    #Hint: math [Processing]
    #Hint: bitops [Processing]
    #Hint: algorithm [Processing]
    #Hint: unicode [Processing]
    #Hint: os [Processing]
    #Hint: pathnorm [Processing]
    #Hint: osseps [Processing]
    #Hint: posix [Processing]
    #Hint: times [Processing]
    #Hint: options [Processing]
    #Hint: typetraits [Processing]
    #Hint: torch_cpp [Processing]
    #Hint: tensors [Processing]
    #Hint: sequtils [Processing]
    #Hint: sets [Processing]
    #Hint: strformat [Processing]
    #Hint: tensor_ops [Processing]
    #Hint: autograd_macro [Processing]
    #Hint: autograd_backward [Processing]
    #Hint: nn [Processing]
    #Hint: modules [Processing]
    #Hint: init [Processing]
    #Hint: python_helpers [Processing]
    #Hint: functional [Processing]
    #SIGSEGV: Illegal storage access. (Attempt to read from nil?)
    

    test.nim:

    import torch
    import torch/[nn, optim]
    
    let inputs = torch.tensor([
      [0.0, 0.0],
      [0.0, 1.0],
      [1.0, 0.0],
      [1.0, 1.0],
    ])
    
    let targets = torch.tensor([
      [0.0],
      [1.0],
      [1.0],
      [0.0],
    ])
    
    let
      fc1 = nn.Linear(2, 4)
      fc2 = nn.Linear(4, 1)
      loss_fn = nn.MSELoss()
      optimizer = optim.SGD(fc1.parameters & fc2.parameters , lr = 0.01, momentum = 0.1)
    
    set_num_threads(1)
    
    when defined gperftools:
      discard ProfilerStart("test_xor.log")
    
    for i in 0 ..< 50000:
      optimizer.zero_grad()
    
      let predictions = inputs.fc1.relu.fc2.sigmoid
    
      let loss = loss_fn(predictions, targets)
      loss.backward()
      optimizer.step()
    
      if i mod 5000 == 0:
        print(loss)
    
    when defined gperftools:
      ProfilerStop()
    
    opened by singularperturbation 4
  • can't install with nimble

    can't install with nimble

    $ nim --version Nim Compiler Version 0.18.1 [Windows: amd64] Compiled at 2018-08-18 Copyright (c) 2006-2018 by Andreas Rumpf

    git hash: b5171f57ef00bffb12387d7daf3487c5e07645f9 active boot switches: -d:release

    $ nimble install nimtorch Prompt: nimtorch not found in any local packages.json, check internet for updated packages? [y/N] y Answer: Downloading Official package list Success Package list downloaded. Tip: 3 messages have been suppressed, use --verbose to show them. Error: Package not found.

    opened by retsyo 3
  • Cannot compile nimtorch tests on Windows 10

    Cannot compile nimtorch tests on Windows 10

    C:/Program Files/mingw-w64/x86_64-8.1.0-posix-seh-rt_v6-rev0/mingw64/bin/../lib/gcc/x86_64-w64-mingw32/8.1.0/../../../../x86_64-w64-mingw32/bin/ld.exe: cannot find -lC:\Users\vsagar200\work\bin\nim-0.19.0_x64\ATen-windows10-cpu\lib\ATen_cpu.lib
    C:/Program Files/mingw-w64/x86_64-8.1.0-posix-seh-rt_v6-rev0/mingw64/bin/../lib/gcc/x86_64-w64-mingw32/8.1.0/../../../../x86_64-w64-mingw32/bin/ld.exe: cannot find -lC:\Users\vsagar200\work\bin\nim-0.19.0_x64\ATen-windows10-cpu\lib\cpuinfo.lib
    collect2.exe: error: ld returned 1 exit status
    Error: execution of an external program failed: 'g++.exe   -o C:\Users\vsagar200\work\soft\nimtorch\tests\test_xor.exe  C:\Users\vsagar200\nimcache\test_xor_d\torch_test_xor.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_system.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\torch_torch.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\fragments_cpp.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_macros.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_tables.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_hashes.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_math.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_strutils.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_parseutils.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_bitops.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_algorithm.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_unicode.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_ospaths.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_winlean.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_dynlib.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\torch_torch_cpp.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_os.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_times.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_options.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_typetraits.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_strformat.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\torch_tensors.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_sequtils.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\stdlib_sets.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\torch_tensor_ops.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\torch_autograd_macro.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\torch_autograd_backward.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\torch_nn.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\torch_init.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\torch_python_helpers.cpp.o C:\Users\vsagar200\nimcache\test_xor_d\torch_optim.cpp.o  -LC:\Users\vsagar200\work\bin\nim-0.19.0_x64\ATen-windows10-cpu\lib -LC:\Users\vsagar200\work\bin\nim-0.19.0_x64\ATen-windows10-cpu\lib64 -lC:\Users\vsagar200\work\bin\nim-0.19.0_x64\ATen-windows10-cpu\lib\ATen_cpu.lib -lC:\Users\vsagar200\work\bin\nim-0.19.0_x64\ATen-windows10-cpu\lib\cpuinfo.lib '
    

    Although the ATEN path is correctly set. Tried on nim 0.18.1 and 0.19.0 the .lib files present at the same location the error is saying it cannot find.

    question 
    opened by eshitasagar 2
  • install Aten with nimtorch

    install Aten with nimtorch

    thanks for the library. are there any plans to have Aten distributed with nim-torch? This will make it easier to build command-line tools that depend on it.

    opened by brentp 1
  • [TODO] [offtopic] discussion regarding nimble limitation (from comments in #6)

    [TODO] [offtopic] discussion regarding nimble limitation (from comments in #6)

    moved to here the discussion started here https://github.com/fragcolor-xyz/nimtorch/issues/6#issuecomment-430511494 to keep each topic separate

    @sinkingsugar

    Nimble has a major flaw, which is it applies all the packages it has on every project you have by default. That's my major concern that easy can create a mess if not considered.

    I will give you an example exactly with nimtorch: Have nimtorch installed as nimble package Also work on the repository Did not run nimble develop Rename a file in the repository Forget to update the module import myrenamedfile into import newlocation/myrenamedfile Build will succeed yet will use import myrenamedfile from nimble this time..

    but it all works if you run nimble develop, right? I think that's expected and I don't see a limitation here (in the sense of making it impossible to do certain things). if you really feel something is ill-designed with nimble it really should be a bug report in https://github.com/nim-lang/nimble/issues/ otherwise it will never get fixed (if there's anything to fix).

    That being said, one possibility would be (and that's doable, not a fundamental flaw IMO): if you call nimble build inside a local package foo, nimble could remove from search path an installed package named foo

    opened by timotheecour 1
  • Add a Gitter chat badge to README.md

    Add a Gitter chat badge to README.md

    fragcolor-xyz/nimtorch now has a Chat Room on Gitter

    @sinkingsugar has just created a chat room. You can visit it here: https://gitter.im/nimtorch/Lobby.

    This pull-request adds this badge to your README.md:

    Gitter

    If my aim is a little off, please let me know.

    Happy chatting.

    PS: Click here if you would prefer not to receive automatic pull-requests from Gitter in future.

    opened by gitter-badger 0
  • Is this project still active

    Is this project still active

    Hi,

    I think a working binding to pytorch from nim could be very valuable to support the use of nim in data science. This project seems to be inactive for a long time now and it is not using the current version of pytorch - any chance that it will be updated?

    opened by bitstormFA 5
  • Question. Import model trained under a Python / Torch library.

    Question. Import model trained under a Python / Torch library.

    Would it be possible or even advisable to import a pth or pkl, which was trained using FastAI, into NimTorch, for the purpose of exposing in a backend written in Nim (for efficiency and speed)?

    opened by UNIcodeX 17
  • Add

    Add "install fragments" to the non-conda installation doc

    add nimble install fragments to this part of the readme As a beginner I wasted an hour trying to figure out what did I do wrong, turns out it was just a package error

    opened by mritunjaymusale 0
  • Error: expression 'step(optimizer)' has no type (or is ambiguous)

    Error: expression 'step(optimizer)' has no type (or is ambiguous)

    I am trying to use nimtorch (I am new to pytorch as well). I am struggling to run a first example.

    I have installed in Windows 10 like this:

    conda create -n aten -c fragcolor aten=2019.02.16.2841
    nimble install fragments
    nimble install torch@#head
    

    And then I tried to compile the code from here:

    import torch
    import torch/[nn, optim]
    
    let
      inputs = torch.tensor([[0.0, 0.0], [0.0, 1.0], [1.0, 0.0], [1.0, 1.0]])
      targets = torch.tensor([[0.0], [1.0], [1.0], [0.0]])
    
    let
      fc1 = nn.Linear(2, 4)
      fc2 = nn.Linear(4, 1)
      loss_fn = nn.MSELoss()
      optimizer = optim.SGD(fc1.parameters & fc2.parameters, lr = 0.01, momentum = 0.1)
    
    for i in 0 ..< 50000:
      optimizer.zero_grad()
    
      var predictions = fc1(inputs).relu()
      predictions = fc2(predictions).sigmoid()
    
      let loss = loss_fn(predictions, targets)
      loss.backward()
      discard optimizer.step()
    
      if i mod 5000 == 0:
        print(loss)
    

    I compile by doing:

    c:> conda activate aten
    c.> nim cpp ex01
    ....
    C:\Users\mantielero\Documents\src\torch\ex01.nim(22, 25) Error: expression 'step(optimizer)' has no type (or is ambiguous)
    

    which is the line:

    discard optimizer.step()
    

    What am I doing wrong?

    opened by mantielero 0
  • Nimble installation fails

    Nimble installation fails

    Its been a while since the last commit, pls dont tell me nimtorch is dead, its wonderful, and i want to start using it, and libraries like this would pump up nim's popularity, are you leaving it for a while but planning on taking it back or just completely abandoned?

    opened by RecruitMain707 6
Releases(v0.2.0)
Owner
Giovanni Petrantoni
Founder and CEO @ Fragcolor
Giovanni Petrantoni
This package implements THOR: Transformer with Stochastic Experts.

THOR: Transformer with Stochastic Experts This PyTorch package implements Taming Sparsely Activated Transformer with Stochastic Experts. Installation

Microsoft 45 Nov 22, 2022
A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualization

Website, Tutorials, and Docs    Uncertainty Toolbox A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualizatio

Uncertainty Toolbox 1.4k Dec 28, 2022
TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations

TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations Requirements python 3.6 torch 1.9 numpy 1.19 Quick Start The experimen

DMIRLAB 4 Oct 16, 2022
Simulating Sycamore quantum circuits classically using tensor network algorithm.

Simulating the Sycamore quantum supremacy circuit This repo contains data we have obtained in simulating the Sycamore quantum supremacy circuits with

Feng Pan 46 Nov 17, 2022
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to

165 Dec 17, 2022
Revisiting Temporal Alignment for Video Restoration

Revisiting Temporal Alignment for Video Restoration [arXiv] Kun Zhou, Wenbo Li, Liying Lu, Xiaoguang Han, Jiangbo Lu We provide our results at Google

52 Dec 25, 2022
Official Code Release for Container : Context Aggregation Network

Container: Context Aggregation Network Official Code Release for Container : Context Aggregation Network Comparion between CNN, MLP-Mixer and Transfor

peng gao 42 Nov 17, 2021
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
SeMask: Semantically Masked Transformers for Semantic Segmentation.

SeMask: Semantically Masked Transformers Jitesh Jain, Anukriti Singh, Nikita Orlov, Zilong Huang, Jiachen Li, Steven Walton, Humphrey Shi This repo co

Picsart AI Research (PAIR) 186 Dec 30, 2022
(NeurIPS 2021) Realistic Evaluation of Transductive Few-Shot Learning

Realistic evaluation of transductive few-shot learning Introduction This repo contains the code for our NeurIPS 2021 submitted paper "Realistic evalua

Olivier Veilleux 14 Dec 13, 2022
Repository for the paper "Exploring the Sensory Spaces of English Perceptual Verbs in Natural Language Data"

Sensory Spaces of English Perceptual Verbs This repository contains the code and collocational data described in the paper "Exploring the Sensory Spac

David Peng 0 Sep 07, 2021
Unsupervised Pre-training for Person Re-identification (LUPerson)

LUPerson Unsupervised Pre-training for Person Re-identification (LUPerson). The repository is for our CVPR2021 paper Unsupervised Pre-training for Per

143 Dec 24, 2022
Large-Scale Unsupervised Object Discovery

Large-Scale Unsupervised Object Discovery Huy V. Vo, Elena Sizikova, Cordelia Schmid, Patrick Pérez, Jean Ponce [PDF] We propose a novel ranking-based

17 Sep 19, 2022
A mini lib that implements several useful functions binding to PyTorch in C++.

Torch-gather A mini library that implements several useful functions binding to PyTorch in C++. What does gather do? Why do we need it? When dealing w

maxwellzh 8 Sep 07, 2022
Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

MT Schmitz 2 Feb 11, 2022
Oriented Response Networks, in CVPR 2017

Oriented Response Networks [Home] [Project] [Paper] [Supp] [Poster] Torch Implementation The torch branch contains: the official torch implementation

ZhouYanzhao 217 Dec 12, 2022
Tweesent-back - Tweesent backend uses fastAPI as the web framework

TweeSent Backend Tweesent backend. This repo uses fastAPI as the web framework.

0 Mar 26, 2022
Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021.

Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021. Figure 1: In the process of motion capture (mocap), some joints or even the whole human

Shinny cui 3 Oct 31, 2022
Python module providing a framework to trace individual edges in an image using Gaussian process regression.

Edge Tracing using Gaussian Process Regression Repository storing python module which implements a framework to trace individual edges in an image usi

Jamie Burke 7 Dec 27, 2022
Unadversarial Examples: Designing Objects for Robust Vision

Unadversarial Examples: Designing Objects for Robust Vision This repository contains the code necessary to replicate the major results of our paper: U

Microsoft 93 Nov 28, 2022