SeMask: Semantically Masked Transformers for Semantic Segmentation.

Overview

SeMask: Semantically Masked Transformers

Framework: PyTorch

Jitesh Jain, Anukriti Singh, Nikita Orlov, Zilong Huang, Jiachen Li, Steven Walton, Humphrey Shi

This repo contains the code for our paper SeMask: Semantically Masked Transformers for Semantic Segmentation.

semask

Contents

  1. Results
  2. Setup Instructions
  3. Citing SeMask

1. Results

Note: † denotes the backbones were pretrained on ImageNet-22k and 384x384 resolution images.

ADE20K

Method Backbone Crop Size mIoU mIoU (ms+flip) #params config Checkpoint
SeMask-T FPN SeMask Swin-T 512x512 42.11 43.16 35M config TBD
SeMask-S FPN SeMask Swin-S 512x512 45.92 47.63 56M config TBD
SeMask-B FPN SeMask Swin-B 512x512 49.35 50.98 96M config TBD
SeMask-L FPN SeMask Swin-L 640x640 51.89 53.52 211M config TBD
SeMask-L MaskFormer SeMask Swin-L 640x640 54.75 56.15 219M config TBD
SeMask-L Mask2Former SeMask Swin-L 640x640 56.41 57.52 222M config TBD
SeMask-L Mask2Former FAPN SeMask Swin-L 640x640 56.68 58.00 227M config TBD
SeMask-L Mask2Former MSFAPN SeMask Swin-L 640x640 56.54 58.22 224M config TBD

Cityscapes

Method Backbone Crop Size mIoU mIoU (ms+flip) #params config Checkpoint
SeMask-T FPN SeMask Swin-T 768x768 74.92 76.56 34M config TBD
SeMask-S FPN SeMask Swin-S 768x768 77.13 79.14 56M config TBD
SeMask-B FPN SeMask Swin-B 768x768 77.70 79.73 96M config TBD
SeMask-L FPN SeMask Swin-L 768x768 78.53 80.39 211M config TBD
SeMask-L Mask2Former SeMask Swin-L 512x1024 83.97 84.98 222M config TBD

COCO-Stuff 10k

Method Backbone Crop Size mIoU mIoU (ms+flip) #params config Checkpoint
SeMask-T FPN SeMask Swin-T 512x512 37.53 38.88 35M config TBD
SeMask-S FPN SeMask Swin-S 512x512 40.72 42.27 56M config TBD
SeMask-B FPN SeMask Swin-B 512x512 44.63 46.30 96M config TBD
SeMask-L FPN SeMask Swin-L 640x640 47.47 48.54 211M config TBD

demo

2. Setup Instructions

We provide the codebase with SeMask incorporated into various models. Please check the setup instructions inside the corresponding folders:

3. Citing SeMask

@article{jain2022semask,
  title={SeMask: Semantically Masking Transformer Backbones for Effective Semantic Segmentation},
  author={Jitesh Jain and Anukriti Singh and Nikita Orlov and Zilong Huang and Jiachen Li and Steven Walton and Humphrey Shi},
  journal={arXiv preprint arXiv:...},
  year={2022}
}

Acknowledgements

Code is based heavily on the following repositories: Swin-Transformer-Semantic-Segmentation, Mask2Former, MaskFormer and FaPN-full.

Owner
Picsart AI Research (PAIR)
Picsart AI Research (PAIR)
PyTorch implementation of PSPNet segmentation network

pspnet-pytorch PyTorch implementation of PSPNet segmentation network Original paper Pyramid Scene Parsing Network Details This is a slightly different

Roman Trusov 532 Dec 29, 2022
A no-BS, dead-simple training visualizer for tf-keras

A no-BS, dead-simple training visualizer for tf-keras TrainingDashboard Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook wi

Vibhu Agrawal 3 May 28, 2021
Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness through a Teacher-guided curriculum Learning Approach

Get Fooled for the Right Reason Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness throu

Sowrya Gali 1 Apr 25, 2022
Implementation of PyTorch-based multi-task pre-trained models

mtdp Library containing implementation related to the research paper "Multi-task pre-training of deep neural networks for digital pathology" (Mormont

Romain Mormont 27 Oct 14, 2022
PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch.

snn-localization repo PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch. Install Dependencies Orig

Sami BARCHID 1 Jan 06, 2022
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll

7 Feb 10, 2022
Wordplay, an artificial Intelligence based crossword puzzle solver.

Wordplay, AI based crossword puzzle solver A crossword is a word puzzle that usually takes the form of a square or a rectangular grid of white- and bl

Vaibhaw 4 Nov 16, 2022
BabelCalib: A Universal Approach to Calibrating Central Cameras. In ICCV (2021)

BabelCalib: A Universal Approach to Calibrating Central Cameras This repository contains the MATLAB implementation of the BabelCalib calibration frame

Yaroslava Lochman 55 Dec 30, 2022
Benchmarking Pipeline for Prediction of Protein-Protein Interactions

B4PPI Benchmarking Pipeline for the Prediction of Protein-Protein Interactions How this benchmarking pipeline has been built, and how to use it, is de

Loïc Lannelongue 4 Jun 27, 2022
An open source Jetson Nano baseboard and tools to design your own.

My Jetson Nano Baseboard This basic baseboard gives the user the foundation and the flexibility to design their own baseboard for the Jetson Nano. It

NVIDIA AI IOT 57 Dec 29, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
Bayesian optimisation library developped by Huawei Noah's Ark Library

Bayesian Optimisation Research This directory contains official implementations for Bayesian optimisation works developped by Huawei R&D, Noah's Ark L

HUAWEI Noah's Ark Lab 395 Dec 30, 2022
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Facebook Research 171 Nov 23, 2022
Machine learning framework for both deep learning and traditional algorithms

NeoML is an end-to-end machine learning framework that allows you to build, train, and deploy ML models. This framework is used by ABBYY engineers for

NeoML 704 Dec 27, 2022
Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention

cosFormer Official implementation of cosformer-attention in cosFormer: Rethinking Softmax in Attention Update log 2022/2/28 Add core code License This

120 Dec 15, 2022
PyTorch Implementation of Region Similarity Representation Learning (ReSim)

ReSim This repository provides the PyTorch implementation of Region Similarity Representation Learning (ReSim) described in this paper: @Article{xiao2

Tete Xiao 74 Jan 03, 2023
Time-Optimal Planning for Quadrotor Waypoint Flight

Time-Optimal Planning for Quadrotor Waypoint Flight This is an example implementation of the paper "Time-Optimal Planning for Quadrotor Waypoint Fligh

Robotics and Perception Group 38 Dec 02, 2022
Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore

[AI6122] Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instructor of this course

HT. Li 5 Sep 12, 2022
[NeurIPS 2020] Code for the paper "Balanced Meta-Softmax for Long-Tailed Visual Recognition"

Balanced Meta-Softmax Code for the paper Balanced Meta-Softmax for Long-Tailed Visual Recognition Jiawei Ren, Cunjun Yu, Shunan Sheng, Xiao Ma, Haiyu

Jiawei Ren 65 Dec 21, 2022