EigenGAN Tensorflow, EigenGAN: Layer-Wise Eigen-Learning for GANs

Overview
Gender Bangs Body Side Pose (Yaw)
Lighting Smile Face Shape Lipstick Color
Painting Style Pose (Yaw) Pose (Pitch) Zoom & Rotate
Flush & Eye Color Mouth Shape Hair Color Hue (Orange-Blue)

More Unsupervisedly Learned Dimensions


EigenGAN

TensorFlow implementation of EigenGAN: Layer-Wise Eigen-Learning for GANs      

Usage

  • Environment

    • Python 3.6

    • TensorFlow 1.15

    • OpenCV, scikit-image, tqdm, oyaml

    • we recommend Anaconda or Miniconda, then you can create the environment with commands below

      conda create -n EigenGAN python=3.6
      
      source activate EigenGAN
      
      conda install opencv scikit-image tqdm tensorflow-gpu=1.15
      
      conda install -c conda-forge oyaml
    • NOTICE: if you create a new conda environment, remember to activate it before any other command

      source activate EigenGAN
  • Data Preparation

    • CelebA-unaligned (10.2GB, higher quality than the aligned data)

      • download the dataset

      • unzip and process the data

        7z x ./data/img_celeba/img_celeba.7z/img_celeba.7z.001 -o./data/img_celeba/
        
        unzip ./data/img_celeba/annotations.zip -d ./data/img_celeba/
        
        python ./scripts/align.py
    • Anime

      • download the dataset

        mkdir -p ./data/anime
        
        rsync --verbose --recursive rsync://78.46.86.149:873/biggan/portraits/ ./data/anime/original_imgs
      • process the data

        python ./scripts/remove_black_edge.py
  • Run (support multi-GPU)

    • training on CelebA

      CUDA_VISIBLE_DEVICES=0,1 \
      python train.py \
      --img_dir ./data/img_celeba/aligned/align_size(572,572)_move(0.250,0.000)_face_factor(0.450)_jpg/data \
      --experiment_name CelebA
    • training on Anime

      CUDA_VISIBLE_DEVICES=0,1 \
      python train.py \
      --img_dir ./data/anime/remove_black_edge_imgs \
      --experiment_name Anime
    • testing

      CUDA_VISIBLE_DEVICES=0 \
      python test_traversal_all_dims.py \
      --experiment_name CelebA
    • loss visualization

      CUDA_VISIBLE_DEVICES='' \
      tensorboard \
      --logdir ./output/CelebA/summaries \
      --port 6006
  • Using Trained Weights

    • trained weights (move to ./output/*.zip)

    • unzip the file (CelebA.zip for example)

      unzip ./output/CelebA.zip -d ./output/
    • testing (see above)

Citation

If you find EigenGAN useful in your research works, please consider citing:

@article{he2021eigengan,
  title={EigenGAN: Layer-Wise Eigen-Learning for GANs},
  author={He, Zhenliang and Kan, Meina and Shan, Shiguang},
  journal={arXiv:2104.12476},
  year={2021}
}
Owner
Zhenliang He
Zhenliang He
Deep Surface Reconstruction from Point Clouds with Visibility Information

Data, code and pretrained models for the paper Deep Surface Reconstruction from Point Clouds with Visibility Information.

Raphael Sulzer 23 Jan 04, 2023
NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework

NLP From Scratch Without Large-Scale Pretraining This repository contains the code, pre-trained model checkpoints and curated datasets for our paper:

Xingcheng Yao 224 Dec 08, 2022
On the Adversarial Robustness of Visual Transformer

On the Adversarial Robustness of Visual Transformer Code for our paper "On the Adversarial Robustness of Visual Transformers"

Rulin Shao 35 Dec 14, 2022
Hierarchical probabilistic 3D U-Net, with attention mechanisms (β€”π˜ˆπ˜΅π˜΅π˜¦π˜―π˜΅π˜ͺ𝘰𝘯 𝘜-π˜•π˜¦π˜΅, π˜šπ˜Œπ˜™π˜¦π˜΄π˜•π˜¦π˜΅) and a nested decoder structure with deep supervision (β€”π˜œπ˜•π˜¦π˜΅++).

Hierarchical probabilistic 3D U-Net, with attention mechanisms (β€”π˜ˆπ˜΅π˜΅π˜¦π˜―π˜΅π˜ͺ𝘰𝘯 𝘜-π˜•π˜¦π˜΅, π˜šπ˜Œπ˜™π˜¦π˜΄π˜•π˜¦π˜΅) and a nested decoder structure with deep supervision (β€”π˜œπ˜•π˜¦π˜΅++). Built in TensorFlow 2.5. Configured for vox

Diagnostic Image Analysis Group 32 Dec 08, 2022
ICCV2021 - Mining Contextual Information Beyond Image for Semantic Segmentation

Introduction The official repository for "Mining Contextual Information Beyond Image for Semantic Segmentation". Our full code has been merged into ss

55 Nov 09, 2022
Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label.

Tensorflow-Mobile-Generic-Object-Localizer Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label. Ori

Ibai Gorordo 11 Nov 15, 2022
Over9000 optimizer

Optimizers and tests Every result is avg of 20 runs. Dataset LR Schedule Imagenette size 128, 5 epoch Imagewoof size 128, 5 epoch Adam - baseline OneC

Mikhail Grankin 405 Nov 27, 2022
Code release of paper Improving neural implicit surfaces geometry with patch warping

NeuralWarp: Improving neural implicit surfaces geometry with patch warping Project page | Paper Code release of paper Improving neural implicit surfac

FranΓ§ois Darmon 167 Dec 30, 2022
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr

Janghoon Han 83 Dec 20, 2022
Tutorial page of the Climate Hack, the greatest hackathon ever

Tutorial page of the Climate Hack, the greatest hackathon ever

UCL Artificial Intelligence Society 12 Jul 02, 2022
An implementation of shampoo

shampoo.pytorch An implementation of shampoo, proposed in Shampoo : Preconditioned Stochastic Tensor Optimization by Vineet Gupta, Tomer Koren and Yor

Ryuichiro Hataya 69 Sep 10, 2022
Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors, CVPR 2021

Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors Human POSEitioning System (H

Aymen Mir 66 Dec 21, 2022
MINERVA: An out-of-the-box GUI tool for offline deep reinforcement learning

MINERVA is an out-of-the-box GUI tool for offline deep reinforcement learning, designed for everyone including non-programmers to do reinforcement learning as a tool.

Takuma Seno 80 Nov 06, 2022
A spatial genome aligner for analyzing multiplexed DNA-FISH imaging data.

jie jie is a spatial genome aligner. This package parses true chromatin imaging signal from noise by aligning signals to a reference DNA polymer model

Bojing Jia 9 Sep 29, 2022
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Dec 30, 2022
The official github repository for Towards Continual Knowledge Learning of Language Models

Towards Continual Knowledge Learning of Language Models This is the official github repository for Towards Continual Knowledge Learning of Language Mo

Joel Jang | μž₯μš”μ—˜ 65 Jan 07, 2023
A script that trains a model to recognize handwritten digits using the MNIST data set.

handwritten-digits-recognition A script that trains a model to recognize handwritten digits using the MNIST data set. Then it loads external files and

Hamza Sayih 1 Oct 30, 2021
Hummingbird compiles trained ML models into tensor computation for faster inference.

Hummingbird Introduction Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to se

Microsoft 3.1k Dec 30, 2022
Deep Learning (with PyTorch)

Deep Learning (with PyTorch) This notebook repository now has a companion website, where all the course material can be found in video and textual for

Alfredo Canziani 6.2k Jan 07, 2023
TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video

TYolov5: A Temporal Yolov5 Detector Based on Quasi-Recurrent Neural Networks for Real-Time Handgun Detection in Video Timely handgun detection is a cr

Mario Duran-Vega 18 Dec 26, 2022