EigenGAN Tensorflow, EigenGAN: Layer-Wise Eigen-Learning for GANs

Overview
Gender Bangs Body Side Pose (Yaw)
Lighting Smile Face Shape Lipstick Color
Painting Style Pose (Yaw) Pose (Pitch) Zoom & Rotate
Flush & Eye Color Mouth Shape Hair Color Hue (Orange-Blue)

More Unsupervisedly Learned Dimensions


EigenGAN

TensorFlow implementation of EigenGAN: Layer-Wise Eigen-Learning for GANs      

Usage

  • Environment

    • Python 3.6

    • TensorFlow 1.15

    • OpenCV, scikit-image, tqdm, oyaml

    • we recommend Anaconda or Miniconda, then you can create the environment with commands below

      conda create -n EigenGAN python=3.6
      
      source activate EigenGAN
      
      conda install opencv scikit-image tqdm tensorflow-gpu=1.15
      
      conda install -c conda-forge oyaml
    • NOTICE: if you create a new conda environment, remember to activate it before any other command

      source activate EigenGAN
  • Data Preparation

    • CelebA-unaligned (10.2GB, higher quality than the aligned data)

      • download the dataset

      • unzip and process the data

        7z x ./data/img_celeba/img_celeba.7z/img_celeba.7z.001 -o./data/img_celeba/
        
        unzip ./data/img_celeba/annotations.zip -d ./data/img_celeba/
        
        python ./scripts/align.py
    • Anime

      • download the dataset

        mkdir -p ./data/anime
        
        rsync --verbose --recursive rsync://78.46.86.149:873/biggan/portraits/ ./data/anime/original_imgs
      • process the data

        python ./scripts/remove_black_edge.py
  • Run (support multi-GPU)

    • training on CelebA

      CUDA_VISIBLE_DEVICES=0,1 \
      python train.py \
      --img_dir ./data/img_celeba/aligned/align_size(572,572)_move(0.250,0.000)_face_factor(0.450)_jpg/data \
      --experiment_name CelebA
    • training on Anime

      CUDA_VISIBLE_DEVICES=0,1 \
      python train.py \
      --img_dir ./data/anime/remove_black_edge_imgs \
      --experiment_name Anime
    • testing

      CUDA_VISIBLE_DEVICES=0 \
      python test_traversal_all_dims.py \
      --experiment_name CelebA
    • loss visualization

      CUDA_VISIBLE_DEVICES='' \
      tensorboard \
      --logdir ./output/CelebA/summaries \
      --port 6006
  • Using Trained Weights

    • trained weights (move to ./output/*.zip)

    • unzip the file (CelebA.zip for example)

      unzip ./output/CelebA.zip -d ./output/
    • testing (see above)

Citation

If you find EigenGAN useful in your research works, please consider citing:

@article{he2021eigengan,
  title={EigenGAN: Layer-Wise Eigen-Learning for GANs},
  author={He, Zhenliang and Kan, Meina and Shan, Shiguang},
  journal={arXiv:2104.12476},
  year={2021}
}
Owner
Zhenliang He
Zhenliang He
DROPO: Sim-to-Real Transfer with Offline Domain Randomization

DROPO: Sim-to-Real Transfer with Offline Domain Randomization Gabriele Tiboni, Karol Arndt, Ville Kyrki. This repository contains the code for the pap

Gabriele Tiboni 8 Dec 19, 2022
project page for VinVL

VinVL: Revisiting Visual Representations in Vision-Language Models Updates 02/28/2021: Project page built. Introduction This repository is the project

308 Jan 09, 2023
Multitask Learning Strengthens Adversarial Robustness

Multitask Learning Strengthens Adversarial Robustness

Columbia University 15 Jun 10, 2022
Automated detection of anomalous exoplanet transits in light curve data.

Automatically detecting anomalous exoplanet transits This repository contains the source code for the paper "Automatically detecting anomalous exoplan

1 Feb 01, 2022
Predicting Student Attentiveness using OpenCV

Predicting-Student-Attentiveness-using-OpenCV The model will predict if a student is attentive or not through facial parameter received through the st

Johann Pinto 2 Aug 20, 2022
Learning Open-World Object Proposals without Learning to Classify

Learning Open-World Object Proposals without Learning to Classify Pytorch implementation for "Learning Open-World Object Proposals without Learning to

Dahun Kim 149 Dec 22, 2022
Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

53 Nov 22, 2022
ICON: Implicit Clothed humans Obtained from Normals

ICON: Implicit Clothed humans Obtained from Normals arXiv, December 2021. Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black Table of C

Yuliang Xiu 1.1k Dec 30, 2022
GazeScroller - Using Facial Movements to perform Hands-free Gesture on the system

GazeScroller Using Facial Movements to perform Hands-free Gesture on the system

2 Jan 05, 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks

P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy achievi

THUDM 540 Dec 30, 2022
The code of paper 'Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection'

Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection Pytorch implemetation of paper 'Learning to Aggregate and Personalize

Tencent YouTu Research 136 Dec 29, 2022
Python Wrapper for Embree

pyembree Python Wrapper for Embree Installation You can install pyembree (and embree) via the conda-forge package. $ conda install -c conda-forge pyem

Anthony Scopatz 67 Dec 24, 2022
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
Code for "ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on", accepted at WACV 2021 Generation of Human Behavior Workshop.

ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on [ Paper ] [ Project Page ] This repository contains the code fo

Andrew Jong 97 Dec 13, 2022
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation

SimplePose Code and pre-trained models for our paper, “Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation”, a

Jia Li 256 Dec 24, 2022
A lightweight tool to get an AI Infrastructure Stack up in minutes not days.

K3ai will take care of setup K8s for You, deploy the AI tool of your choice and even run your code on it.

k3ai 105 Dec 04, 2022
Spatial-Location-Constraint-Prototype-Loss-for-Open-Set-Recognition

Spatial Location Constraint Prototype Loss for Open Set Recognition Official PyTorch implementation of "Spatial Location Constraint Prototype Loss for

Xia Ziheng 12 Jun 24, 2022
Image super-resolution through deep learning

srez Image super-resolution through deep learning. This project uses deep learning to upscale 16x16 images by a 4x factor. The resulting 64x64 images

David Garcia 5.3k Dec 28, 2022
Powerful unsupervised domain adaptation method for dense retrieval.

Powerful unsupervised domain adaptation method for dense retrieval

Ubiquitous Knowledge Processing Lab 191 Dec 28, 2022
Extracts essential Mediapipe face landmarks and arranges them in a sequenced order.

simplified_mediapipe_face_landmarks Extracts essential Mediapipe face landmarks and arranges them in a sequenced order. The default 478 Mediapipe face

Irfan 13 Oct 04, 2022