Progressive Domain Adaptation for Object Detection

Overview

Progressive Domain Adaptation for Object Detection

Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-faster-rcnn and PyTorch-CycleGAN.

Paper

Progressive Domain Adaptation for Object Detection Han-Kai Hsu, Chun-Han Yao, Yi-Hsuan Tsai, Wei-Chih Hung, Hung-Yu Tseng, Maneesh Singh and Ming-Hsuan Yang IEEE Winter Conference on Applications of Computer Vision (WACV), 2020.

Please cite our paper if you find it useful for your research.

@inproceedings{hsu2020progressivedet,
  author = {Han-Kai Hsu and Chun-Han Yao and Yi-Hsuan Tsai and Wei-Chih Hung and Hung-Yu Tseng and Maneesh Singh and Ming-Hsuan Yang},
  booktitle = {IEEE Winter Conference on Applications of Computer Vision (WACV)},
  title = {Progressive Domain Adaptation for Object Detection},
  year = {2020}
}

Dependencies

This code is tested with Pytorch 0.4.1 and CUDA 9.0

# Pytorch via pip: Download and install Pytorch 0.4.1 wheel for CUDA 9.0
#                  from https://download.pytorch.org/whl/cu90/torch_stable.html
# Pytorch via conda: 
conda install pytorch=0.4.1 cuda90 -c pytorch
# Other dependencies:
pip install -r requirements.txt
sh ./lib/make.sh

Data Preparation

KITTI

  • Download the data from here.
  • Extract the files under data/KITTI/

Cityscapes

  • Download the data from here.
  • Extract the files under data/CityScapes/

Foggy Cityscapes

  • Follow the instructions here to request for the dataset download.
  • Locate the data under data/CityScapes/leftImg8bit/ as foggytrain and foggyval.

BDD100k

  • Download the data from here.
  • Extract the files under data/bdd100k/

Generate synthetic data with CycleGAN

Generate the synthetic data with the PyTorch-CycleGAN implementation.

git clone https://github.com/aitorzip/PyTorch-CycleGAN

Dataset loader code

Import the dataset loader code in ./cycleGAN_dataset_loader/ to train/test the CycleGAN on corresponding image translation task.

Generate from pre-trained weight:

Follow the testing instructions on PyTorch-CycleGAN and download the weight below to generate synthetic images. (Remember to change to the corresponding output image size)

  • KITTI with Cityscapes style (KITTI->Cityscapes): size=(376,1244) Locate the generated data under data/KITTI/training/synthCity_image_2/ with same naming and folder structure as original KITTI data.
  • Cityscapes with FoggyCityscapes style (Cityscapes->FoggyCityscapes): size=(1024,2048) Locate the generated data under data/CityScapes/leftImg8bit/synthFoggytrain with same naming and folder structure as original Cityscapes data.
  • Cityscapes with BDD style (Cityscpaes->BDD100k): size=(1024,1280) Locate the generated data under data/CityScapes/leftImg8bit/synthBDDdaytrain and data/CityScapes/leftImg8bit/synthBDDdayval with same naming and folder structure as original Cityscapes data.

Train your own CycleGAN:

Please follow the training instructions on PyTorch-CycleGAN.

Test the adaptation model

Download the following adapted weights to ./trained_weights/adapt_weight/

./experiments/scripts/test_adapt_faster_rcnn_stage1.sh [GPU_ID] [Adapt_mode] vgg16
# Specify the GPU_ID you want to use
# Adapt_mode selection:
#   'K2C': KITTI->Cityscapes
#   'C2F': Cityscapes->Foggy Cityscapes
#   'C2BDD': Cityscapes->BDD100k_day
# Example:
./experiments/scripts/test_adapt_faster_rcnn_stage2.sh 0 K2C vgg16

Train your own model

Stage one

./experiments/scripts/train_adapt_faster_rcnn_stage1.sh [GPU_ID] [Adapt_mode] vgg16
# Specify the GPU_ID you want to use
# Adapt_mode selection:
#   'K2C': KITTI->Cityscapes
#   'C2F': Cityscapes->Foggy Cityscapes
#   'C2BDD': Cityscapes->BDD100k_day
# Example:
./experiments/scripts/train_adapt_faster_rcnn_stage1.sh 0 K2C vgg16

Download the following pretrained detector weights to ./trained_weights/pretrained_detector/

Stage two

./experiments/scripts/train_adapt_faster_rcnn_stage2.sh 0 K2C vgg16

Discriminator score files:

  • netD_synthC_score.json
  • netD_CsynthFoggyC_score.json
  • netD_CsynthBDDday_score.json

Extract the pretrained CycleGAN discriminator scores to ./trained_weights/
or
Save a dictionary of CycleGAN discriminator scores with image name as key and score as value
Ex: {'jena_000074_000019_leftImg8bit.png': 0.64}

Detection results

Adaptation results

Acknowledgement

Thanks to the awesome implementations from pytorch-faster-rcnn and PyTorch-CycleGAN.

Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS

Welcome to Yearn Gnosis Safe! Setting up your local environment Infrastructure Deploying Gnosis Safe Prerequisites 1. Create infrastructure for secret

Numan 16 Jul 18, 2022
This repository collects 100 papers related to negative sampling methods.

Negative-Sampling-Paper This repository collects 100 papers related to negative sampling methods, covering multiple research fields such as Recommenda

RUCAIBox 119 Dec 29, 2022
Static Features Classifier - A static features classifier for Point-Could clusters using an Attention-RNN model

Static Features Classifier This is a static features classifier for Point-Could

ABDALKARIM MOHTASIB 1 Jan 25, 2022
TOOD: Task-aligned One-stage Object Detection, ICCV2021 Oral

One-stage object detection is commonly implemented by optimizing two sub-tasks: object classification and localization, using heads with two parallel branches, which might lead to a certain level of

264 Jan 09, 2023
Tool for live presentations using manim

manim-presentation Tool for live presentations using manim Install pip install manim-presentation opencv-python Usage Use the class Slide as your sce

Federico Galatolo 146 Jan 06, 2023
Code release for paper: The Boombox: Visual Reconstruction from Acoustic Vibrations

The Boombox: Visual Reconstruction from Acoustic Vibrations Boyuan Chen, Mia Chiquier, Hod Lipson, Carl Vondrick Columbia University Project Website |

Boyuan Chen 12 Nov 30, 2022
SegNet model implemented using keras framework

keras-segnet Implementation of SegNet-like architecture using keras. Current version doesn't support index transferring proposed in SegNet article, so

185 Aug 30, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

Zixuan Ke 176 Jan 05, 2023
A cool little repl-based simulation written in Python

A cool little repl-based simulation written in Python planned to integrate machine-learning into itself to have AI battle to the death before your eye

Em 6 Sep 17, 2022
Predicting path with preference based on user demonstration using Maximum Entropy Deep Inverse Reinforcement Learning in a continuous environment

Preference-Planning-Deep-IRL Introduction Check my portfolio post Dependencies Gym stable-baselines3 PyTorch Usage Take Demonstration python3 record.

Tianyu Li 9 Oct 26, 2022
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
ElasticFace: Elastic Margin Loss for Deep Face Recognition

This is the official repository of the paper: ElasticFace: Elastic Margin Loss for Deep Face Recognition Paper on arxiv: arxiv Model Log file Pretrain

Fadi Boutros 113 Dec 14, 2022
DRIFT is a tool for Diachronic Analysis of Scientific Literature.

About DRIFT is a tool for Diachronic Analysis of Scientific Literature. The application offers user-friendly and customizable utilities for two modes:

Rajaswa Patil 108 Dec 12, 2022
Meta-learning for NLP

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks Code for training the meta-learning models and fine-tuning on downstr

IESL 43 Nov 08, 2022
The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning

[ICCV 2021] GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning This is the official implementation of our ICCV2021 paper GyroFlow. Our pres

MEGVII Research 36 Sep 07, 2022
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Jacob Schreiber 3k Dec 29, 2022
⚾🤖⚾ Automatic baseball pitching overlay in realtime

⚾ Automatically overlaying pitch motion and trajectory with machine learning! This project takes your baseball pitching clips and automatically genera

Tony Chou 240 Dec 05, 2022
A novel Engagement Detection with Multi-Task Training (ED-MTT) system

A novel Engagement Detection with Multi-Task Training (ED-MTT) system which minimizes MSE and triplet loss together to determine the engagement level of students in an e-learning environment.

Onur Çopur 12 Nov 11, 2022
YOLOX_AUDIO is an audio event detection model based on YOLOX

YOLOX_AUDIO is an audio event detection model based on YOLOX, an anchor-free version of YOLO. This repo is an implementated by PyTorch. Main goal of YOLOX_AUDIO is to detect and classify pre-defined

intflow Inc. 77 Dec 19, 2022
The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store development.

The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store dev

George Rocha 0 Feb 03, 2022