A JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short.

Related tags

Deep Learningbrave
Overview

BraVe

This is a JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short.

The model provided in this package was implemented based on the internal model that was used to compute results for the accompanying paper. It achieves comparable results on the evaluation tasks when evaluated side-by-side. Not all details are guaranteed to be identical though, and some results may differ from those given in the paper. In particular, this implementation does not provide the option to train with optical flow.

We provide a selection of pretrained checkpoints in the table below, which can directly be evaluated against HMDB 51 with the evaluation tools this package. These are exactly the checkpoints that were used to provide the numbers in the accompanying paper, and were not trained with the exact trainer given in this package. For details on training a model with this package, please see the end of this readme.

In the table below, the different configurations are represented by using e.g. V/A for video (narrow view) to audio (broad view), or V/F for a narrow view containing video, and a broad view containing optical flow.

The backbone in each case is TSMResnet, with a given width multiplier (please see the accompanying paper for further details). For all of the given numbers below, the SVM regularization constant used is 0.0001. For HMDB 51, the average is given in brackets, followed by the top-1 percentages for each of the splits.

Views Architecture HMDB51 UCF-101 K600 Trained with this package Checkpoint
V/AF TSM (1X) (69.2%) 71.307%, 68.497%, 67.843% 92.9% 69.2% download
V/AF TSM (2X) (69.9%) 72.157%, 68.432%, 69.02% 93.2% 70.2% download
V/A TSM (1X) (69.4%) 70.131%, 68.889%, 69.085% 93.0% 70.6% download
V/VVV TSM (1X) (65.4%) 66.797%, 63.856%, 65.425% 92.6% 70.8% download

Reproducing results from the paper

This package provides everything needed to evaluate the above checkpoints against HMDB 51. It supports Python 3.7 and above.

To get started, we recommend using a clean virtualenv. You may then install the brave package directly from GitHub using,

pip install git+https://github.com/deepmind/brave.git

A pre-processed version of the HMDB 51 dataset can be downloaded using the following command. It requires that both ffmpeg and unrar are available. The following will download the dataset to /tmp/hmdb51/, but any other location would also work.

  python -m brave.download_hmdb --output_dir /tmp/hmdb51/

To evaluate a checkpoint downloaded from the above table, the following may be used. The dataset shards arguments should be set to match the paths used above.

  python -m brave.evaluate_video_embeddings \
    --checkpoint_path <path/to/downloaded/checkpoint>.npy \
    --train_dataset_shards '/tmp/hmdb51/split_1/train/*' \
    --test_dataset_shards '/tmp/hmdb51/split_1/test/*' \
    --svm_regularization 0.0001 \
    --batch_size 8

Note that any of the three splits can be evaluated by changing the dataset split paths. To run this efficiently using a GPU, it is also necessary to install the correct version of jaxlib. To install jaxlib with support for cuda 10.1 on linux, the following install should be sufficient, though other precompiled packages may be found through the JAX documentation.

  pip install https://storage.googleapis.com/jax-releases/cuda101/jaxlib-0.1.69+cuda101-cp39-none-manylinux2010_x86_64.whl

Depending on the available GPU memory available, the batch_size parameter may be tuned to obtain better performance, or to reduce the required GPU memory.

Training a network

This package may also be used to train a model from scratch using jaxline. In order to try this, first ensure the configuration is set appropriately by modifying brave/config.py. At minimum, it would also be necessary to choose an appropriate global batch size (by default, the setting of 512 is likely too large for any single-machine training setup). In addition, a value must be set for dataset_shards. This should contain the paths of the tfrecord files containing the serialized training data.

For details on checkpointing and distributing computation, see the jaxline documentation.

Similarly to above, it is necessary to install the correct jaxlib package to enable training on a GPU.

The training may now be launched using,

  python -m brave.experiment --config=brave/config.py

Training datasets

This model is able to read data stored in the format specified by DMVR. For an example of writing training data in the correct format see the code in dataset/fixtures.py, which is used to write the test fixtures used in the tests for this package.

Running the tests

After checking out this code locally, you may run the package tests using

  pip install -e .
  pytest brave

We recommend doing this from a clean virtual environment.

Citing this work

If you use this code (or any derived code), data or these models in your work, please cite the relevant accompanying paper.

@misc{recasens2021broaden,
      title={Broaden Your Views for Self-Supervised Video Learning},
      author={Adrià Recasens and Pauline Luc and Jean-Baptiste Alayrac and Luyu Wang and Ross Hemsley and Florian Strub and Corentin Tallec and Mateusz Malinowski and Viorica Patraucean and Florent Altché and Michal Valko and Jean-Bastien Grill and Aäron van den Oord and Andrew Zisserman},
      year={2021},
      eprint={2103.16559},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Disclaimer

This is not an official Google product

Owner
DeepMind
DeepMind
Equivariant Imaging: Learning Beyond the Range Space

Equivariant Imaging: Learning Beyond the Range Space Equivariant Imaging: Learning Beyond the Range Space Dongdong Chen, Julián Tachella, Mike E. Davi

Dongdong Chen 46 Jan 01, 2023
Implementation of Shape Generation and Completion Through Point-Voxel Diffusion

Shape Generation and Completion Through Point-Voxel Diffusion Project | Paper Implementation of Shape Generation and Completion Through Point-Voxel Di

Linqi Zhou 103 Dec 29, 2022
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

Daniel Bourke 3.4k Jan 07, 2023
Bulk2Space is a spatial deconvolution method based on deep learning frameworks

Bulk2Space Spatially resolved single-cell deconvolution of bulk transcriptomes using Bulk2Space Bulk2Space is a spatial deconvolution method based on

Dr. FAN, Xiaohui 60 Dec 27, 2022
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
This project uses ViT to perform image classification tasks on DATA set CIFAR10.

Vision-Transformer-Multiprocess-DistributedDataParallel-Apex Introduction This project uses ViT to perform image classification tasks on DATA set CIFA

Kaicheng Yang 3 Jun 03, 2022
Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan

Phan Nguyen 1 Dec 16, 2021
🤗 Paper Style Guide

🤗 Paper Style Guide (Work in progress, send a PR!) Libraries to Know booktabs natbib cleveref Either seaborn, plotly or altair for graphs algorithmic

Hugging Face 66 Dec 12, 2022
This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch.

MPDL---TODO This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch. Ci

CodebaseLi 3 Nov 27, 2022
Implementation of MA-Trace - a general-purpose multi-agent RL algorithm for cooperative environments.

Off-Policy Correction For Multi-Agent Reinforcement Learning This repository is the official implementation of Off-Policy Correction For Multi-Agent R

4 Aug 18, 2022
Implementing yolov4 target detection and tracking based on nao robot

Implementing yolov4 target detection and tracking based on nao robot

6 Apr 19, 2022
Implementation of SiameseXML (ICML 2021)

SiameseXML Code for SiameseXML: Siamese networks meet extreme classifiers with 100M labels Best Practices for features creation Adding sub-words on to

Extreme Classification 35 Nov 06, 2022
Additional environments compatible with OpenAI gym

Decentralized Control of Quadrotor Swarms with End-to-end Deep Reinforcement Learning A codebase for training reinforcement learning policies for quad

Zhehui Huang 40 Dec 06, 2022
Python project to take sound as input and output as RGB + Brightness values suitable for DMX

sound-to-light Python project to take sound as input and output as RGB + Brightness values suitable for DMX Current goals: Get one pixel working: Vary

Bobby Cox 1 Nov 17, 2021
wlad 2 Dec 19, 2022
text_recognition_toolbox: The reimplementation of a series of classical scene text recognition papers with Pytorch in a uniform way.

text recognition toolbox 1. 项目介绍 该项目是基于pytorch深度学习框架,以统一的改写方式实现了以下6篇经典的文字识别论文,论文的详情如下。该项目会持续进行更新,欢迎大家提出问题以及对代码进行贡献。 模型 论文标题 发表年份 模型方法划分 CRNN 《An End-t

168 Dec 24, 2022
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

SJTU-ViSYS 112 Nov 28, 2022
Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation

Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation The code of: Context Decoupling Augmentation for Weakly Supervised Semanti

54 Dec 12, 2022
PyTorch META-DATASET (Few-shot classification benchmark)

PyTorch META-DATASET (Few-shot classification benchmark) This repo contains a PyTorch implementation of meta-dataset and a unified implementation of s

Malik Boudiaf 39 Oct 31, 2022
This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation)

This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation) Usage example python dynamic_inverted_softmax.py --sims_train

36 Dec 29, 2022