Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Overview

Optimizing Dense Retrieval Model Training with Hard Negatives

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma

This repo provides code, retrieval results, and trained models for our SIGIR Full paper Optimizing Dense Retrieval Model Training with Hard Negatives. The previous version is Learning To Retrieve: How to Train a Dense Retrieval Model Effectively and Efficiently.

We achieve very impressive retrieval results on both passage and document retrieval bechmarks. The proposed two algorithms (STAR and ADORE) are very efficient. IMHO, they are well worth trying and most likely improve your retriever's performance by a large margin.

The following figure shows the pros and cons of different training methods. You can train an effective Dense Retrieval model in three steps. Firstly, warmup your model using random negatives or BM25 top negatives. Secondly, use our proposed STAR to train the query encoder and document encoder. Thirdly, use our proposed ADORE to train the query encoder. image

Retrieval Results and Trained Models

Passage Retrieval Dev [email protected] Dev [email protected] Test [email protected] Files
Inbatch-Neg 0.264 0.837 0.583 Model
Rand-Neg 0.301 0.853 0.612 Model
STAR 0.340 0.867 0.642 Model Train Dev TRECTest
ADORE (Inbatch-Neg) 0.316 0.860 0.658 Model
ADORE (Rand-Neg) 0.326 0.865 0.661 Model
ADORE (STAR) 0.347 0.876 0.683 Model Train Dev TRECTest Leaderboard
Doc Retrieval Dev [email protected] Dev [email protected] Test [email protected] Files
Inbatch-Neg 0.320 0.864 0.544 Model
Rand-Neg 0.330 0.859 0.572 Model
STAR 0.390 0.867 0.605 Model Train Dev TRECTest
ADORE (Inbatch-Neg) 0.362 0.884 0.580 Model
ADORE (Rand-Neg) 0.361 0.885 0.585 Model
ADORE (STAR) 0.405 0.919 0.628 Model Train Dev TRECTest Leaderboard

If you want to use our first-stage leaderboard runs, contact me and I will send you the file.

If any links fail or the files go wrong, please contact me or open a issue.

Requirements

To install requirements, run the following commands:

git clone [email protected]:jingtaozhan/DRhard.git
cd DRhard
python setup.py install

However, you need to set up a new python enverionment for data preprocessing (see below).

Data Download

To download all the needed data, run:

bash download_data.sh

Data Preprocess

You need to set up a new environment with transformers==2.8.0 to tokenize the text. This is because we find the tokenizer behaves differently among versions 2, 3 and 4. To replicate the results in our paper with our provided trained models, it is necessary to use version 2.8.0 for preprocessing. Otherwise, you may need to re-train the DR models.

Run the following codes.

python preprocess.py --data_type 0; python preprocess.py --data_type 1

Inference

With our provided trained models, you can easily replicate our reported experimental results. Note that minor variance may be observed due to environmental difference.

STAR

The following codes use the provided STAR model to compute query/passage embeddings and perform similarity search on the dev set. (You can use --faiss_gpus option to use gpus for much faster similarity search.)

python ./star/inference.py --data_type passage --max_doc_length 256 --mode dev   
python ./star/inference.py --data_type doc --max_doc_length 512 --mode dev   

Run the following code to evaluate on MSMARCO Passage dataset.

python ./msmarco_eval.py ./data/passage/preprocess/dev-qrel.tsv ./data/passage/evaluate/star/dev.rank.tsv
Eval Started
#####################
MRR @10: 0.3404237731386721
QueriesRanked: 6980
#####################

Run the following code to evaluate on MSMARCO Document dataset.

python ./msmarco_eval.py ./data/doc/preprocess/dev-qrel.tsv ./data/doc/evaluate/star/dev.rank.tsv 100
Eval Started
#####################
MRR @100: 0.3903422772218344
QueriesRanked: 5193
#####################

ADORE

ADORE computes the query embeddings. The document embeddings are pre-computed by other DR models, like STAR. The following codes use the provided ADORE(STAR) model to compute query embeddings and perform similarity search on the dev set. (You can use --faiss_gpus option to use gpus for much faster similarity search.)

python ./adore/inference.py --model_dir ./data/passage/trained_models/adore-star --output_dir ./data/passage/evaluate/adore-star --preprocess_dir ./data/passage/preprocess --mode dev --dmemmap_path ./data/passage/evaluate/star/passages.memmap
python ./adore/inference.py --model_dir ./data/doc/trained_models/adore-star --output_dir ./data/doc/evaluate/adore-star --preprocess_dir ./data/doc/preprocess --mode dev --dmemmap_path ./data/doc/evaluate/star/passages.memmap

Evaluate ADORE(STAR) model on dev passage dataset:

python ./msmarco_eval.py ./data/passage/preprocess/dev-qrel.tsv ./data/passage/evaluate/adore-star/dev.rank.tsv

You will get

Eval Started
#####################
MRR @10: 0.34660697230181425
QueriesRanked: 6980
#####################

Evaluate ADORE(STAR) model on dev document dataset:

python ./msmarco_eval.py ./data/doc/preprocess/dev-qrel.tsv ./data/doc/evaluate/adore-star/dev.rank.tsv 100

You will get

Eval Started
#####################
MRR @100: 0.4049777020859768
QueriesRanked: 5193
#####################

Convert QID/PID Back

Our data preprocessing reassigns new ids for each query and document. Therefore, you may want to convert the ids back. We provide a script for this.

The following code shows an example to convert ADORE-STAR's ranking results on the dev passage dataset.

python ./cvt_back.py --input_dir ./data/passage/evaluate/adore-star/ --preprocess_dir ./data/passage/preprocess --output_dir ./data/passage/official_runs/adore-star --mode dev --dataset passage
python ./msmarco_eval.py ./data/passage/dataset/qrels.dev.small.tsv ./data/passage/official_runs/adore-star/dev.rank.tsv

You will get

Eval Started
#####################
MRR @10: 0.34660697230181425
QueriesRanked: 6980
#####################

Train

In the following instructions, we show how to replicate our experimental results on MSMARCO Passage Retrieval task.

STAR

We use the same warmup model as ANCE, the most competitive baseline, to enable a fair comparison. Please download it and extract it at ./data/passage/warmup

Next, we use this warmup model to extract static hard negatives, which will be utilized by STAR.

python ./star/prepare_hardneg.py \
--data_type passage \
--max_query_length 32 \
--max_doc_length 256 \
--mode dev \
--topk 200

It will automatically use all available gpus to retrieve documents. If all available cuda memory is less than 26GB (the index size), you can add --not_faiss_cuda to use CPU for retrieval.

Run the following command to train the DR model with STAR. In our experiments, we only use one GPU to train.

python ./star/train.py --do_train \
    --max_query_length 24 \
    --max_doc_length 120 \
    --preprocess_dir ./data/passage/preprocess \
    --hardneg_path ./data/passage/warmup_retrieve/hard.json \
    --init_path ./data/passage/warmup \
    --output_dir ./data/passage/star_train/models \
    --logging_dir ./data/passage/star_train/log \
    --optimizer_str lamb \
    --learning_rate 1e-4 \
    --gradient_checkpointing --fp16

Although we set number of training epcohs a very large value in the script, it is likely to converge within 50k steps (1.5 days) and you can manually kill the process. Using multiple gpus should speed up a lot, which requires some changes in the codes.

ADORE

Now we show how to use ADORE to finetune the query encoder. Here we use our provided STAR checkpoint as the fixed document encoder. You can also use another document encoder.

The passage embeddings by STAR should be located at ./data/passage/evaluate/star/passages.memmap. If not, follow the STAR inference procedure as shown above.

python ./adore/train.py \
--metric_cut 200 \
--init_path ./data/passage/trained_models/star \
--pembed_path ./data/passage/evaluate/star/passages.memmap \
--model_save_dir ./data/passage/adore_train/models \
--log_dir ./data/passage/adore_train/log \
--preprocess_dir ./data/passage/preprocess \
--model_gpu_index 0 \
--faiss_gpu_index 1 2 3

The above command uses the first gpu for encoding, and the 2nd~4th gpu for dense retrieval. You can change the faiss_gpu_index values based on your available cuda memory. For example, if you have a 32GB gpu, you can set model_gpu_index and faiss_gpu_index both to 0 because the CUDA memory is large enough. But if you only have 11GB gpus, three gpus are required for faiss.

Empirically, ADORE significantly improves retrieval performance after training for only one epoch, which only costs 1 hour if using GPUs to retrieve dynamic hard negatives.

Owner
Jingtao Zhan
IR Researcher, Ph.D student at Tsinghua University.
Jingtao Zhan
Exploring whether attention is necessary for vision transformers

Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet Paper/Report TL;DR We replace the attention layer in a v

Luke Melas-Kyriazi 461 Jan 07, 2023
This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans This repository contains the implementation of the pap

Photogrammetry & Robotics Bonn 40 Dec 01, 2022
ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge (ManiSkill Challenge), a large-scale learning-from-demonstrations benchmark for object manipulation.

ManiSkill-Learn ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge, a large-scale learning-from-dem

Hao Su's Lab, UCSD 48 Dec 30, 2022
(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."

Dressing in Order (DiOr) 👚 [Paper] 👖 [Webpage] 👗 [Running this code] The official implementation of "Dressing in Order: Recurrent Person Image Gene

Aiyu Cui 277 Dec 28, 2022
Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning"

Prompt-Tuning Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning" Currently, we support the following huggigface models: Bart

Andrew Zeng 36 Dec 19, 2022
A basic neural network for image segmentation.

Unet_erythema_detection A basic neural network for image segmentation. 前期准备 1.在logs文件夹中下载h5权重文件,百度网盘链接在logs文件夹中 2.将所有原图 放置在“/dataset_1/JPEGImages/”文件夹

1 Jan 16, 2022
Continuous Time LiDAR odometry

CT-ICP: Elastic SLAM for LiDAR sensors This repository implements the SLAM CT-ICP (see our article), a lightweight, precise and versatile pure LiDAR o

385 Dec 29, 2022
DuBE: Duple-balanced Ensemble Learning from Skewed Data

DuBE: Duple-balanced Ensemble Learning from Skewed Data "Towards Inter-class and Intra-class Imbalance in Class-imbalanced Learning" (IEEE ICDE 2022 S

6 Nov 12, 2022
Code release for NeuS

NeuS We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inpu

Peng Wang 813 Jan 04, 2023
Lightweight Cuda Renderer with Python Wrapper.

pyRender Lightweight Cuda Renderer with Python Wrapper. Compile Change compile.sh line 5 to the glm library include path. This library can be download

Jingwei Huang 53 Dec 02, 2022
Implements MLP-Mixer: An all-MLP Architecture for Vision.

MLP-Mixer-CIFAR10 This repository implements MLP-Mixer as proposed in MLP-Mixer: An all-MLP Architecture for Vision. The paper introduces an all MLP (

Sayak Paul 51 Jan 04, 2023
Code for the AAAI 2022 paper "Zero-Shot Cross-Lingual Machine Reading Comprehension via Inter-Sentence Dependency Graph".

multilingual-mrc-isdg Code for the AAAI 2022 paper "Zero-Shot Cross-Lingual Machine Reading Comprehension via Inter-Sentence Dependency Graph". This r

Liyan 5 Dec 07, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
SMIS - Semantically Multi-modal Image Synthesis(CVPR 2020)

Semantically Multi-modal Image Synthesis Project page / Paper / Demo Semantically Multi-modal Image Synthesis(CVPR2020). Zhen Zhu, Zhiliang Xu, Anshen

316 Dec 01, 2022
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube | Slides Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to mat

677 Dec 28, 2022
UnpNet - Rethinking 3-D LiDAR Point Cloud Segmentation(IEEE TNNLS)

UnpNet Citation Please cite the following paper if you use this repository in your reseach. @article {PMID:34914599, Title = {Rethinking 3-D LiDAR Po

Shijie Li 4 Jul 15, 2022
Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more.

CycleGAN PyTorch | project page | paper Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs, for

Jun-Yan Zhu 11.5k Dec 30, 2022
Allows including an action inside another action (by preprocessing the Yaml file). This is how composite actions should have worked.

actions-includes Allows including an action inside another action (by preprocessing the Yaml file). Instead of using uses or run in your action step,

Tim Ansell 70 Nov 04, 2022
This folder contains the implementation of the multi-relational attribute propagation algorithm.

MrAP This folder contains the implementation of the multi-relational attribute propagation algorithm. It requires the package pytorch-scatter. Please

6 Dec 06, 2022
Official implement of "CAT: Cross Attention in Vision Transformer".

CAT: Cross Attention in Vision Transformer This is official implement of "CAT: Cross Attention in Vision Transformer". Abstract Since Transformer has

100 Dec 15, 2022