Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Overview

Optimizing Dense Retrieval Model Training with Hard Negatives

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma

This repo provides code, retrieval results, and trained models for our SIGIR Full paper Optimizing Dense Retrieval Model Training with Hard Negatives. The previous version is Learning To Retrieve: How to Train a Dense Retrieval Model Effectively and Efficiently.

We achieve very impressive retrieval results on both passage and document retrieval bechmarks. The proposed two algorithms (STAR and ADORE) are very efficient. IMHO, they are well worth trying and most likely improve your retriever's performance by a large margin.

The following figure shows the pros and cons of different training methods. You can train an effective Dense Retrieval model in three steps. Firstly, warmup your model using random negatives or BM25 top negatives. Secondly, use our proposed STAR to train the query encoder and document encoder. Thirdly, use our proposed ADORE to train the query encoder. image

Retrieval Results and Trained Models

Passage Retrieval Dev [email protected] Dev [email protected] Test [email protected] Files
Inbatch-Neg 0.264 0.837 0.583 Model
Rand-Neg 0.301 0.853 0.612 Model
STAR 0.340 0.867 0.642 Model Train Dev TRECTest
ADORE (Inbatch-Neg) 0.316 0.860 0.658 Model
ADORE (Rand-Neg) 0.326 0.865 0.661 Model
ADORE (STAR) 0.347 0.876 0.683 Model Train Dev TRECTest Leaderboard
Doc Retrieval Dev [email protected] Dev [email protected] Test [email protected] Files
Inbatch-Neg 0.320 0.864 0.544 Model
Rand-Neg 0.330 0.859 0.572 Model
STAR 0.390 0.867 0.605 Model Train Dev TRECTest
ADORE (Inbatch-Neg) 0.362 0.884 0.580 Model
ADORE (Rand-Neg) 0.361 0.885 0.585 Model
ADORE (STAR) 0.405 0.919 0.628 Model Train Dev TRECTest Leaderboard

If you want to use our first-stage leaderboard runs, contact me and I will send you the file.

If any links fail or the files go wrong, please contact me or open a issue.

Requirements

To install requirements, run the following commands:

git clone [email protected]:jingtaozhan/DRhard.git
cd DRhard
python setup.py install

However, you need to set up a new python enverionment for data preprocessing (see below).

Data Download

To download all the needed data, run:

bash download_data.sh

Data Preprocess

You need to set up a new environment with transformers==2.8.0 to tokenize the text. This is because we find the tokenizer behaves differently among versions 2, 3 and 4. To replicate the results in our paper with our provided trained models, it is necessary to use version 2.8.0 for preprocessing. Otherwise, you may need to re-train the DR models.

Run the following codes.

python preprocess.py --data_type 0; python preprocess.py --data_type 1

Inference

With our provided trained models, you can easily replicate our reported experimental results. Note that minor variance may be observed due to environmental difference.

STAR

The following codes use the provided STAR model to compute query/passage embeddings and perform similarity search on the dev set. (You can use --faiss_gpus option to use gpus for much faster similarity search.)

python ./star/inference.py --data_type passage --max_doc_length 256 --mode dev   
python ./star/inference.py --data_type doc --max_doc_length 512 --mode dev   

Run the following code to evaluate on MSMARCO Passage dataset.

python ./msmarco_eval.py ./data/passage/preprocess/dev-qrel.tsv ./data/passage/evaluate/star/dev.rank.tsv
Eval Started
#####################
MRR @10: 0.3404237731386721
QueriesRanked: 6980
#####################

Run the following code to evaluate on MSMARCO Document dataset.

python ./msmarco_eval.py ./data/doc/preprocess/dev-qrel.tsv ./data/doc/evaluate/star/dev.rank.tsv 100
Eval Started
#####################
MRR @100: 0.3903422772218344
QueriesRanked: 5193
#####################

ADORE

ADORE computes the query embeddings. The document embeddings are pre-computed by other DR models, like STAR. The following codes use the provided ADORE(STAR) model to compute query embeddings and perform similarity search on the dev set. (You can use --faiss_gpus option to use gpus for much faster similarity search.)

python ./adore/inference.py --model_dir ./data/passage/trained_models/adore-star --output_dir ./data/passage/evaluate/adore-star --preprocess_dir ./data/passage/preprocess --mode dev --dmemmap_path ./data/passage/evaluate/star/passages.memmap
python ./adore/inference.py --model_dir ./data/doc/trained_models/adore-star --output_dir ./data/doc/evaluate/adore-star --preprocess_dir ./data/doc/preprocess --mode dev --dmemmap_path ./data/doc/evaluate/star/passages.memmap

Evaluate ADORE(STAR) model on dev passage dataset:

python ./msmarco_eval.py ./data/passage/preprocess/dev-qrel.tsv ./data/passage/evaluate/adore-star/dev.rank.tsv

You will get

Eval Started
#####################
MRR @10: 0.34660697230181425
QueriesRanked: 6980
#####################

Evaluate ADORE(STAR) model on dev document dataset:

python ./msmarco_eval.py ./data/doc/preprocess/dev-qrel.tsv ./data/doc/evaluate/adore-star/dev.rank.tsv 100

You will get

Eval Started
#####################
MRR @100: 0.4049777020859768
QueriesRanked: 5193
#####################

Convert QID/PID Back

Our data preprocessing reassigns new ids for each query and document. Therefore, you may want to convert the ids back. We provide a script for this.

The following code shows an example to convert ADORE-STAR's ranking results on the dev passage dataset.

python ./cvt_back.py --input_dir ./data/passage/evaluate/adore-star/ --preprocess_dir ./data/passage/preprocess --output_dir ./data/passage/official_runs/adore-star --mode dev --dataset passage
python ./msmarco_eval.py ./data/passage/dataset/qrels.dev.small.tsv ./data/passage/official_runs/adore-star/dev.rank.tsv

You will get

Eval Started
#####################
MRR @10: 0.34660697230181425
QueriesRanked: 6980
#####################

Train

In the following instructions, we show how to replicate our experimental results on MSMARCO Passage Retrieval task.

STAR

We use the same warmup model as ANCE, the most competitive baseline, to enable a fair comparison. Please download it and extract it at ./data/passage/warmup

Next, we use this warmup model to extract static hard negatives, which will be utilized by STAR.

python ./star/prepare_hardneg.py \
--data_type passage \
--max_query_length 32 \
--max_doc_length 256 \
--mode dev \
--topk 200

It will automatically use all available gpus to retrieve documents. If all available cuda memory is less than 26GB (the index size), you can add --not_faiss_cuda to use CPU for retrieval.

Run the following command to train the DR model with STAR. In our experiments, we only use one GPU to train.

python ./star/train.py --do_train \
    --max_query_length 24 \
    --max_doc_length 120 \
    --preprocess_dir ./data/passage/preprocess \
    --hardneg_path ./data/passage/warmup_retrieve/hard.json \
    --init_path ./data/passage/warmup \
    --output_dir ./data/passage/star_train/models \
    --logging_dir ./data/passage/star_train/log \
    --optimizer_str lamb \
    --learning_rate 1e-4 \
    --gradient_checkpointing --fp16

Although we set number of training epcohs a very large value in the script, it is likely to converge within 50k steps (1.5 days) and you can manually kill the process. Using multiple gpus should speed up a lot, which requires some changes in the codes.

ADORE

Now we show how to use ADORE to finetune the query encoder. Here we use our provided STAR checkpoint as the fixed document encoder. You can also use another document encoder.

The passage embeddings by STAR should be located at ./data/passage/evaluate/star/passages.memmap. If not, follow the STAR inference procedure as shown above.

python ./adore/train.py \
--metric_cut 200 \
--init_path ./data/passage/trained_models/star \
--pembed_path ./data/passage/evaluate/star/passages.memmap \
--model_save_dir ./data/passage/adore_train/models \
--log_dir ./data/passage/adore_train/log \
--preprocess_dir ./data/passage/preprocess \
--model_gpu_index 0 \
--faiss_gpu_index 1 2 3

The above command uses the first gpu for encoding, and the 2nd~4th gpu for dense retrieval. You can change the faiss_gpu_index values based on your available cuda memory. For example, if you have a 32GB gpu, you can set model_gpu_index and faiss_gpu_index both to 0 because the CUDA memory is large enough. But if you only have 11GB gpus, three gpus are required for faiss.

Empirically, ADORE significantly improves retrieval performance after training for only one epoch, which only costs 1 hour if using GPUs to retrieve dynamic hard negatives.

Owner
Jingtao Zhan
IR Researcher, Ph.D student at Tsinghua University.
Jingtao Zhan
SW components and demos for visual kinship recognition. An emphasis is put on the FIW dataset-- data loaders, benchmarks, results in summary.

FIW Data Development Kit Table of Contents Introduction Families In the Wild Database Publications Organization To Do License Getting Involved Introdu

Joseph P. Robinson 12 Jun 04, 2022
(CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic

ClassSR (CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic Paper Authors: Xiangtao Kong, Hengyuan

Xiangtao Kong 308 Jan 05, 2023
Transformers based fully on MLPs

Awesome MLP-based Transformers papers An up-to-date list of Transformers based fully on MLPs without attention! Why this repo? After transformers and

Fawaz Sammani 35 Dec 30, 2022
[AAAI-2022] Official implementations of MCL: Mutual Contrastive Learning for Visual Representation Learning

Mutual Contrastive Learning for Visual Representation Learning This project provides source code for our Mutual Contrastive Learning for Visual Repres

winycg 48 Jan 02, 2023
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022
Lenia - Mathematical Life Forms

For full version list, see Timeline in Lenia portal [2020-10-13] Update Python version with multi-kernel and multi-channel extensions (v3.4 LeniaNDK.p

Bert Chan 3.1k Dec 28, 2022
A TensorFlow 2.x implementation of Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders Are Scalable Vision Learners A TensorFlow implementation of Masked Autoencoders Are Scalable Vision Learners [1]. Our implementati

Aritra Roy Gosthipaty 59 Dec 10, 2022
A simple editor for captions in .SRT file extension

WaySRT A simple editor for captions in .SRT file extension The program doesn't use any external dependecies, just run: python way_srt.py {file_name.sr

Gustavo Lopes 3 Nov 16, 2022
NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs.

NAS-HPO-Bench-II API Overview NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs. It helps a fair and low-

yoichi hirose 8 Nov 21, 2022
YOLOv4-v3 Training Automation API for Linux

This repository allows you to get started with training a state-of-the-art Deep Learning model with little to no configuration needed! You provide your labeled dataset or label your dataset using our

BMW TechOffice MUNICH 626 Dec 31, 2022
Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution

unfoldedVBA Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution This repository contains the Pytorch implementation of the unrolled

Yunshi HUANG 2 Jul 10, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records

HiPAL Code for KDD'22 Applied Data Science Track submission -- HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electro

Hanyang Liu 4 Aug 08, 2022
The audio-video synchronization of MKV Container Format is exploited to achieve data hiding

The audio-video synchronization of MKV Container Format is exploited to achieve data hiding, where the hidden data can be utilized for various management purposes, including hyper-linking, annotation

Maxim Zaika 1 Nov 17, 2021
Si Adek Keras is software VR dangerous object detection.

Si Adek Python Keras Sistem Informasi Deteksi Benda Berbahaya Keras Python. Version 1.0 Developed by Ananda Rauf Maududi. Developed date: 24 November

Ananda Rauf 1 Dec 21, 2021
codes for Self-paced Deep Regression Forests with Consideration on Ranking Fairness

Self-paced Deep Regression Forests with Consideration on Ranking Fairness This is official codes for paper Self-paced Deep Regression Forests with Con

Learning in Vision 4 Sep 11, 2022
A modern pure-Python library for reading PDF files

pdf A modern pure-Python library for reading PDF files. The goal is to have a modern interface to handle PDF files which is consistent with itself and

6 Apr 06, 2022
Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation

Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation Introduction 📋 Official implementation of Explainable Robust Learnin

JeongEun Park 6 Apr 19, 2022
Code release of paper "Deep Multi-View Stereo gone wild"

Deep MVS gone wild Pytorch implementation of "Deep MVS gone wild" (Paper | website) This repository provides the code to reproduce the experiments of

François Darmon 53 Dec 24, 2022