Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Overview

Optimizing Dense Retrieval Model Training with Hard Negatives

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma

This repo provides code, retrieval results, and trained models for our SIGIR Full paper Optimizing Dense Retrieval Model Training with Hard Negatives. The previous version is Learning To Retrieve: How to Train a Dense Retrieval Model Effectively and Efficiently.

We achieve very impressive retrieval results on both passage and document retrieval bechmarks. The proposed two algorithms (STAR and ADORE) are very efficient. IMHO, they are well worth trying and most likely improve your retriever's performance by a large margin.

The following figure shows the pros and cons of different training methods. You can train an effective Dense Retrieval model in three steps. Firstly, warmup your model using random negatives or BM25 top negatives. Secondly, use our proposed STAR to train the query encoder and document encoder. Thirdly, use our proposed ADORE to train the query encoder. image

Retrieval Results and Trained Models

Passage Retrieval Dev [email protected] Dev [email protected] Test [email protected] Files
Inbatch-Neg 0.264 0.837 0.583 Model
Rand-Neg 0.301 0.853 0.612 Model
STAR 0.340 0.867 0.642 Model Train Dev TRECTest
ADORE (Inbatch-Neg) 0.316 0.860 0.658 Model
ADORE (Rand-Neg) 0.326 0.865 0.661 Model
ADORE (STAR) 0.347 0.876 0.683 Model Train Dev TRECTest Leaderboard
Doc Retrieval Dev [email protected] Dev [email protected] Test [email protected] Files
Inbatch-Neg 0.320 0.864 0.544 Model
Rand-Neg 0.330 0.859 0.572 Model
STAR 0.390 0.867 0.605 Model Train Dev TRECTest
ADORE (Inbatch-Neg) 0.362 0.884 0.580 Model
ADORE (Rand-Neg) 0.361 0.885 0.585 Model
ADORE (STAR) 0.405 0.919 0.628 Model Train Dev TRECTest Leaderboard

If you want to use our first-stage leaderboard runs, contact me and I will send you the file.

If any links fail or the files go wrong, please contact me or open a issue.

Requirements

To install requirements, run the following commands:

git clone [email protected]:jingtaozhan/DRhard.git
cd DRhard
python setup.py install

However, you need to set up a new python enverionment for data preprocessing (see below).

Data Download

To download all the needed data, run:

bash download_data.sh

Data Preprocess

You need to set up a new environment with transformers==2.8.0 to tokenize the text. This is because we find the tokenizer behaves differently among versions 2, 3 and 4. To replicate the results in our paper with our provided trained models, it is necessary to use version 2.8.0 for preprocessing. Otherwise, you may need to re-train the DR models.

Run the following codes.

python preprocess.py --data_type 0; python preprocess.py --data_type 1

Inference

With our provided trained models, you can easily replicate our reported experimental results. Note that minor variance may be observed due to environmental difference.

STAR

The following codes use the provided STAR model to compute query/passage embeddings and perform similarity search on the dev set. (You can use --faiss_gpus option to use gpus for much faster similarity search.)

python ./star/inference.py --data_type passage --max_doc_length 256 --mode dev   
python ./star/inference.py --data_type doc --max_doc_length 512 --mode dev   

Run the following code to evaluate on MSMARCO Passage dataset.

python ./msmarco_eval.py ./data/passage/preprocess/dev-qrel.tsv ./data/passage/evaluate/star/dev.rank.tsv
Eval Started
#####################
MRR @10: 0.3404237731386721
QueriesRanked: 6980
#####################

Run the following code to evaluate on MSMARCO Document dataset.

python ./msmarco_eval.py ./data/doc/preprocess/dev-qrel.tsv ./data/doc/evaluate/star/dev.rank.tsv 100
Eval Started
#####################
MRR @100: 0.3903422772218344
QueriesRanked: 5193
#####################

ADORE

ADORE computes the query embeddings. The document embeddings are pre-computed by other DR models, like STAR. The following codes use the provided ADORE(STAR) model to compute query embeddings and perform similarity search on the dev set. (You can use --faiss_gpus option to use gpus for much faster similarity search.)

python ./adore/inference.py --model_dir ./data/passage/trained_models/adore-star --output_dir ./data/passage/evaluate/adore-star --preprocess_dir ./data/passage/preprocess --mode dev --dmemmap_path ./data/passage/evaluate/star/passages.memmap
python ./adore/inference.py --model_dir ./data/doc/trained_models/adore-star --output_dir ./data/doc/evaluate/adore-star --preprocess_dir ./data/doc/preprocess --mode dev --dmemmap_path ./data/doc/evaluate/star/passages.memmap

Evaluate ADORE(STAR) model on dev passage dataset:

python ./msmarco_eval.py ./data/passage/preprocess/dev-qrel.tsv ./data/passage/evaluate/adore-star/dev.rank.tsv

You will get

Eval Started
#####################
MRR @10: 0.34660697230181425
QueriesRanked: 6980
#####################

Evaluate ADORE(STAR) model on dev document dataset:

python ./msmarco_eval.py ./data/doc/preprocess/dev-qrel.tsv ./data/doc/evaluate/adore-star/dev.rank.tsv 100

You will get

Eval Started
#####################
MRR @100: 0.4049777020859768
QueriesRanked: 5193
#####################

Convert QID/PID Back

Our data preprocessing reassigns new ids for each query and document. Therefore, you may want to convert the ids back. We provide a script for this.

The following code shows an example to convert ADORE-STAR's ranking results on the dev passage dataset.

python ./cvt_back.py --input_dir ./data/passage/evaluate/adore-star/ --preprocess_dir ./data/passage/preprocess --output_dir ./data/passage/official_runs/adore-star --mode dev --dataset passage
python ./msmarco_eval.py ./data/passage/dataset/qrels.dev.small.tsv ./data/passage/official_runs/adore-star/dev.rank.tsv

You will get

Eval Started
#####################
MRR @10: 0.34660697230181425
QueriesRanked: 6980
#####################

Train

In the following instructions, we show how to replicate our experimental results on MSMARCO Passage Retrieval task.

STAR

We use the same warmup model as ANCE, the most competitive baseline, to enable a fair comparison. Please download it and extract it at ./data/passage/warmup

Next, we use this warmup model to extract static hard negatives, which will be utilized by STAR.

python ./star/prepare_hardneg.py \
--data_type passage \
--max_query_length 32 \
--max_doc_length 256 \
--mode dev \
--topk 200

It will automatically use all available gpus to retrieve documents. If all available cuda memory is less than 26GB (the index size), you can add --not_faiss_cuda to use CPU for retrieval.

Run the following command to train the DR model with STAR. In our experiments, we only use one GPU to train.

python ./star/train.py --do_train \
    --max_query_length 24 \
    --max_doc_length 120 \
    --preprocess_dir ./data/passage/preprocess \
    --hardneg_path ./data/passage/warmup_retrieve/hard.json \
    --init_path ./data/passage/warmup \
    --output_dir ./data/passage/star_train/models \
    --logging_dir ./data/passage/star_train/log \
    --optimizer_str lamb \
    --learning_rate 1e-4 \
    --gradient_checkpointing --fp16

Although we set number of training epcohs a very large value in the script, it is likely to converge within 50k steps (1.5 days) and you can manually kill the process. Using multiple gpus should speed up a lot, which requires some changes in the codes.

ADORE

Now we show how to use ADORE to finetune the query encoder. Here we use our provided STAR checkpoint as the fixed document encoder. You can also use another document encoder.

The passage embeddings by STAR should be located at ./data/passage/evaluate/star/passages.memmap. If not, follow the STAR inference procedure as shown above.

python ./adore/train.py \
--metric_cut 200 \
--init_path ./data/passage/trained_models/star \
--pembed_path ./data/passage/evaluate/star/passages.memmap \
--model_save_dir ./data/passage/adore_train/models \
--log_dir ./data/passage/adore_train/log \
--preprocess_dir ./data/passage/preprocess \
--model_gpu_index 0 \
--faiss_gpu_index 1 2 3

The above command uses the first gpu for encoding, and the 2nd~4th gpu for dense retrieval. You can change the faiss_gpu_index values based on your available cuda memory. For example, if you have a 32GB gpu, you can set model_gpu_index and faiss_gpu_index both to 0 because the CUDA memory is large enough. But if you only have 11GB gpus, three gpus are required for faiss.

Empirically, ADORE significantly improves retrieval performance after training for only one epoch, which only costs 1 hour if using GPUs to retrieve dynamic hard negatives.

Owner
Jingtao Zhan
IR Researcher, Ph.D student at Tsinghua University.
Jingtao Zhan
Deep Sea Treasure Environment for Multi-Objective Optimization Research

DeepSeaTreasure Environment Installation In order to get started with this environment, you can install it using the following command: python3 -m pip

imec IDLab 6 Nov 14, 2022
Harmonic Memory Networks for Graph Completion

HMemNetworks Code and documentation for Harmonic Memory Networks, a series of models for compositionally assembling representations of graph elements

mlalisse 0 Oct 27, 2021
Multiview 3D object detection on MultiviewC dataset through moft3d.

Voxelized 3D Feature Aggregation for Multiview Detection [arXiv] Multiview 3D object detection on MultiviewC dataset through VFA. Introduction We prop

Jiahao Ma 20 Dec 21, 2022
Implementing Vision Transformer (ViT) in PyTorch

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

2 Dec 24, 2021
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation

Multipath RefineNet A MATLAB based framework for semantic image segmentation and general dense prediction tasks on images. This is the source code for

Guosheng Lin 575 Dec 06, 2022
根据midi文件演奏“风物之诗琴”的脚本 "Windsong Lyre" auto play

Genshin-lyre-auto-play 简体中文 | English 简介 根据midi文件演奏“风物之诗琴”的脚本。由Python驱动,在此承诺, ⚠️ 项目内绝不含任何能够引起安全问题的代码。 前排提示:所有键盘在动但是原神没反应的都是因为没有管理员权限,双击run.bat或者以管理员模式

御坂17032号 386 Jan 01, 2023
CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer

CycleTransGAN-EVC CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer Demo emotion CycleTransGAN CycleTransGAN Cycle

24 Dec 15, 2022
Find-Lane-Line - Use openCV library and Python to detect the road-lane-line

Find-Lane-Line This project is to use openCV library and Python to detect the road-lane-line. Data Pipeline Step one : Color Selection Step two : Cann

Kenny Cheng 3 Aug 17, 2022
A modern pure-Python library for reading PDF files

pdf A modern pure-Python library for reading PDF files. The goal is to have a modern interface to handle PDF files which is consistent with itself and

6 Apr 06, 2022
PoolFormer: MetaFormer is Actually What You Need for Vision

PoolFormer: MetaFormer is Actually What You Need for Vision (arXiv) This is a PyTorch implementation of PoolFormer proposed by our paper "MetaFormer i

Sea AI Lab 1k Dec 30, 2022
People movement type classifier with YOLOv4 detection and SORT tracking.

Movement classification The goal of this project would be movement classification of people, in other words, walking (normal and fast) and running. Yo

4 Sep 21, 2021
Mahadi-Now - This Is Pakistani Just Now Login Tools

PAKISTANI JUST NOW LOGIN TOOLS Install apt update apt upgrade apt install python

MAHADI HASAN AFRIDI 19 Apr 06, 2022
A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

Vikash Sehwag 65 Dec 19, 2022
This repo is the official implementation of "L2ight: Enabling On-Chip Learning for Optical Neural Networks via Efficient in-situ Subspace Optimization".

L2ight is a closed-loop ONN on-chip learning framework to enable scalable ONN mapping and efficient in-situ learning. L2ight adopts a three-stage learning flow that first calibrates the complicated p

Jiaqi Gu 9 Jul 14, 2022
Lab course materials for IEMBA 8/9 course "Coding and Artificial Intelligence"

IEMBA 8/9 - Coding and Artificial Intelligence Dear IEMBA 8/9 students, welcome to our IEMBA 8/9 elective course Coding and Artificial Intelligence, t

Artificial Intelligence & Machine Learning (AI:ML Lab) @ HSG 1 Jan 11, 2022
Python with OpenCV - MediaPip Framework Hand Detection

Python HandDetection Python with OpenCV - MediaPip Framework Hand Detection Explore the docs » Contact Me About The Project It is a Computer vision pa

2 Jan 07, 2022
Planner_backend - Academic planner application designed for students and counselors.

Planner (backend) Academic planner application designed for students and advisors.

2 Dec 31, 2021
An attempt at the implementation of GLOM, Geoffrey Hinton's paper for emergent part-whole hierarchies from data

GLOM TensorFlow This Python package attempts to implement GLOM in TensorFlow, which allows advances made by several different groups transformers, neu

Rishit Dagli 32 Feb 21, 2022
A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.

AMAZ3DSim AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery

Daniel Hirsch 13 Nov 04, 2022
Exploring Relational Context for Multi-Task Dense Prediction [ICCV 2021]

Adaptive Task-Relational Context (ATRC) This repository provides source code for the ICCV 2021 paper Exploring Relational Context for Multi-Task Dense

David Brüggemann 35 Dec 05, 2022