Learning to Reach Goals via Iterated Supervised Learning

Related tags

Deep Learninggcsl
Overview

Build Status

Vanilla GCSL

This repository contains a vanilla implementation of "Learning to Reach Goals via Iterated Supervised Learning" proposed by Dibya Gosh et al. in 2019.

In short, the paper proposes a learning framework to progressively refine a goal-conditioned imitation policy pi_k(a_t|s_t,g) based on relabeling past experiences as new training goals. In particular, the approach iteratively performs the following steps: a) sample a new goal g and collect experiences using pi_k(-|-,g), b) relabel trajectories such that reached states become surrogate goals (details below) and c) update the policy pi_(k+1) using a behavioral cloning objective. The approach is self-supervised and does not necessarily rely on expert demonstrations or reward functions. The paper shows, that training for these surrogate tuples actually leads to desirable goal-reaching behavior.

Relabeling details Let (s_t,a_t,g) be a state-action-goal tuple from an experienced trajectory and (s_(t+r),a_(t+r),g) any future state reached within the same trajectory. While the agent might have failed to reach g, we may construct the relabeled training objective (s_t,a_t,s_(t+r)), since s_(t+r) was actually reached via s_t,a_t,s_(t+1),a_(t+1)...s_(t+r).

Discussion By definition according to the paper, an optimal policy is one that reaches it goals. In this sense, previous experiences where relabeling has been performed constitute optimal self-supervised training data, regardless of the current state of the policy. Hence, old data can be reused at all times to improve the current policy. A potential drawback of this optimality definition is the absence of an efficient goal reaching behavior notion. However, the paper (and subsequent experiments) show experimentally that the resulting behavioral strategies are fairly goal-directed.

About this repository

This repository contains a vanilla, easy-to-understand PyTorch-based implementation of the proposed method and applies it to an customized Cartpole environment. In particular, the goal of the adapted Cartpole environment is to: a) maintain an upright pole (zero pole angle) and to reach a particular cart position (shown in red). A qualitative performance comparison of two agents at different training times is shown below. Training started with a random policy, no expert demonstrations were used.

1,000 steps 5,000 steps 20,000 steps

Dynamic environment experiments

Since we condition our policy on goals, nothing stops us from changing the goals over time, i.e g -> g(t). The following animation shows the agent successfully chasing a moving goal.

Parallel environments

The branch parallel-ray-envs hosts the same cartpole example but training is speed-up via ray primitives. In particular, environments rollouts are parallelized and trajectory results are incorporated on the fly. The parallel version is roughly 35% faster than the sequential one. Its currently not merged with main, since it requires a bit more code to digest.

Run the code

Install

pip install git+https://github.com/cheind/gcsl.git

and start training via

python -m gcsl.examples.cartpole train

which will save models to ./tmp/cartpoleagent_xxxxx.pth. To evaluate, run

python -m gcsl.examples.cartpole eval ./tmp/cartpolenet_20000.pth

See command line options for tuning. The above animation for the dynamic goal was created via the following command

python -m examples.cartpole eval ^
 tmp\cartpolenet_20000.pth ^
 -seed 123 ^
 -num-episodes 1 ^
 -max-steps 500 ^
 -goal-xmin "-1" ^
 -goal-xmax "1" ^
 --dynamic-goal ^
 --save-gif

References

@inproceedings{
ghosh2021learning,
title={Learning to Reach Goals via Iterated Supervised Learning},
author={Dibya Ghosh and Abhishek Gupta and Ashwin Reddy and Justin Fu and Coline Manon Devin and Benjamin Eysenbach and Sergey Levine},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=rALA0Xo6yNJ}
}
Owner
Christoph Heindl
I am a scientist at PROFACTOR/JKU working at the interface between computer vision, robotics and deep learning.
Christoph Heindl
A general python framework for visual object tracking and video object segmentation, based on PyTorch

PyTracking A general python framework for visual object tracking and video object segmentation, based on PyTorch. 📣 Two tracking/VOS papers accepted

2.6k Jan 04, 2023
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech

STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech Keon Lee, Ky

Keon Lee 114 Dec 12, 2022
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The

Benedek Rozemberczki 188 Dec 29, 2022
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 01, 2023
Make a surveillance camera from your raspberry pi!

rpi-surveillance Make a surveillance camera from your Raspberry Pi 4! The surveillance is built as following: the camera records 10 seconds video and

Vladyslav 62 Feb 03, 2022
Multitask Learning Strengthens Adversarial Robustness

Multitask Learning Strengthens Adversarial Robustness

Columbia University 15 Jun 10, 2022
The official codes for the ICCV2021 presentation "Uniformity in Heterogeneity: Diving Deep into Count Interval Partition for Crowd Counting"

UEPNet (ICCV2021 Poster Presentation) This repository contains codes for the official implementation in PyTorch of UEPNet as described in Uniformity i

Tencent YouTu Research 15 Dec 14, 2022
Implementation of Deep Deterministic Policy Gradiet Algorithm in Tensorflow

ddpg-aigym Deep Deterministic Policy Gradient Implementation of Deep Deterministic Policy Gradiet Algorithm (Lillicrap et al.arXiv:1509.02971.) in Ten

Steven Spielberg P 247 Dec 07, 2022
KinectFusion implemented in Python with PyTorch

KinectFusion implemented in Python with PyTorch This is a lightweight Python implementation of KinectFusion. All the core functions (TSDF volume, fram

Jingwen Wang 80 Jan 03, 2023
Leveraging OpenAI's Codex to solve cornerstone problems in Music

Music-Codex Leveraging OpenAI's Codex to solve cornerstone problems in Music Please NOTE: Presented generated samples were created by OpenAI's Codex P

Alex 2 Mar 11, 2022
202 Jan 06, 2023
Implementation of Diverse Semantic Image Synthesis via Probability Distribution Modeling

Diverse Semantic Image Synthesis via Probability Distribution Modeling (CVPR 2021) Paper Zhentao Tan, Menglei Chai, Dongdong Chen, Jing Liao, Qi Chu,

tzt 45 Nov 17, 2022
Official implementation for Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos

Multi-modal Interaction Graph Convolutioal Network for Temporal Language Localization in Videos Official implementation for Multi-Modal Interaction Gr

Zongmeng Zhang 15 Oct 18, 2022
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks

Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks Stable Neural ODE with Lyapunov-Stable Equilibrium

Kang Qiyu 8 Dec 12, 2022
PyTorch implementation of "Learn to Dance with AIST++: Music Conditioned 3D Dance Generation."

Learn to Dance with AIST++: Music Conditioned 3D Dance Generation. Installation pip install -r requirements.txt Prepare Dataset bash data/scripts/pre

Zj Li 8 Sep 07, 2021
Dataset and Code for the paper "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021), and "Depth-only Object Tracking" (BMVC2021)

DeT and DOT Code and datasets for "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021) "Depth-only Object Tracking" (BMVC2021) @InProceedings

Yan Song 55 Dec 15, 2022
RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

The first comprehensive Robustness investigation benchmark on large-scale dataset ImageNet regarding ARchitecture design and Training techniques towards diverse noises.

132 Dec 23, 2022
A rule-based log analyzer & filter

Flog 一个根据规则集来处理文本日志的工具。 前言 在日常开发过程中,由于缺乏必要的日志规范,导致很多人乱打一通,一个日志文件夹解压缩后往往有几十万行。 日志泛滥会导致信息密度骤减,给排查问题带来了不小的麻烦。 以前都是用grep之类的工具先挑选出有用的,再逐条进行排查,费时费力。在忍无可忍之后决

上山打老虎 9 Jun 23, 2022
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.

Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor M

Kevin Lu 1.4k Jan 07, 2023
Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them

TensorFlow Serving + Streamlit! ✨ 🖼️ Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them! This is a pretty simple S

Álvaro Bartolomé 18 Jan 07, 2023