Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

Overview

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper]

This is Official PyTorch implementation for HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning.

@inproceedings{lee2021help,
    title     = {HELP: Hardware-Adaptive Efficient Latency Prediction for NAS via Meta-Learning},
    author    = {Lee, Hayeon and Lee, Sewoong and Chong, Song and Hwang, Sung Ju},
    booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
    year      = {2021}
} 

Overview

For deployment, neural architecture search should be hardware-aware, in order to satisfy the device-specific constraints (e.g., memory usage, latency and energy consumption) and enhance the model efficiency. Existing methods on hardware-aware NAS collect a large number of samples (e.g., accuracy and latency) from a target device, either builds a lookup table or a latency estimator. However, such approach is impractical in real-world scenarios as there exist numerous devices with different hardware specifications, and collecting samples from such a large number of devices will require prohibitive computational and monetary cost. To overcome such limitations, we propose Hardware-adaptive Efficient Latency Predictor (HELP), which formulates the device-specific latency estimation problem as a meta-learning problem, such that we can estimate the latency of a model's performance for a given task on an unseen device with a few samples. To this end, we introduce novel hardware embeddings to embed any devices considering them as black-box functions that output latencies, and meta-learn the hardware-adaptive latency predictor in a device-dependent manner, using the hardware embeddings. We validate the proposed HELP for its latency estimation performance on unseen platforms, on which it achieves high estimation performance with as few as 10 measurement samples, outperforming all relevant baselines. We also validate end-to-end NAS frameworks using HELP against ones without it, and show that it largely reduces the total time cost of the base NAS method, in latency-constrained settings.

Prerequisites

  • Python 3.8 (Anaconda)
  • PyTorch 1.8.1
  • CUDA 10.2

Hardware spec used for meta-training the proposed HELP model

  • GPU: A single Nvidia GeForce RTX 2080Ti
  • CPU: Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz

Installation

$ conda create --name help python=3.8
$ conda activate help
$ conda install pytorch==1.8.1 torchvision cudatoolkit=10.2 -c pytorch
$ pip install nas-bench-201
$ pip install tqdm
$ conda install scipy
$ conda install pyyaml
$ conda install tensorboard

Contents

1. Experiments on NAS-Bench-201 Search Space

2. Experiments on FBNet Search Space

3. Experiments on OFA Search Space

4. Experiments on HAT Search Space

1. Reproduce Main Results on NAS-Bench-201 Search Space

We provide the code to reproduce the main results on NAS-Bench-201 search space as follows:

  • Computing architecture ranking correlation between latencies estimated by HELP and true measured latencies on unseen devices (Table 3).
  • Latency-constrained NAS Results with MetaD2A + HELP on unseen devices (Table 4).
  • Meta-Training HELP model.

1.1. Data Preparation and Model Checkpoint

We include all required datasets and checkpoints in this github repository.

1.2. [Meta-Test] Architecture ranking correlation

You can compute architecture ranking correlation between latencies estimated by HELP and true measured latencies on unseen devices on NAS-Bench-201 search space (Table 3):

$ python main.py --search_space nasbench201 \
		 --mode 'meta-test' \
		 --num_samples 10 \
		 --num_meta_train_sample 900 \
                 --load_path [Path of Checkpoint File] \
		 --meta_train_devices '1080ti_1,1080ti_32,1080ti_256,silver_4114,silver_4210r,samsung_a50,pixel3,essential_ph_1,samsung_s7' \
		 --meta_valid_devices 'titanx_1,titanx_32,titanx_256,gold_6240' \                 
                 --meta_test_devices 'titan_rtx_256,gold_6226,fpga,pixel2,raspi4,eyeriss' 

You can use checkpoint file provided by this git repository ./data/nasbench201/checkpoint/help_max_corr.pt as follows:

$ python main.py --search_space nasbench201 \
		 --mode 'meta-test' \
		 --num_samples 10 \
		 --num_meta_train_sample 900 \
                 --load_path './data/nasbench201/checkpoint/help_max_corr.pt' \
		 --meta_train_devices '1080ti_1,1080ti_32,1080ti_256,silver_4114,silver_4210r,samsung_a50,pixel3,essential_ph_1,samsung_s7' \
		 --meta_valid_devices 'titanx_1,titanx_32,titanx_256,gold_6240' \                 
                 --meta_test_devices 'titan_rtx_256,gold_6226,fpga,pixel2,raspi4,eyeriss' 

or you can use provided script:

$ bash script/run_meta_test_nasbench201.sh [GPU_NUM]

Architecture Ranking Correlation Results (Table 3)

Method # of Training Samples
From Target Device
Desktop GPU
(Titan RTX Batch 256)
Desktop CPU
(Intel Gold 6226)
Mobile
Pixel2
Raspi4 ASIC FPGA Mean
FLOPS - 0.950 0.826 0.765 0.846 0.437 0.900 0.787
Layer-wise Predictor - 0.667 0.866 - - - - 0.767
BRP-NAS 900 0.814 0.796 0.666 0.847 0.811 0.801 0.789
BRP-NAS
(+extra samples)
3200 0.822 0.805 0.693 0.853 0.830 0.828 0.805
HELP (Ours) 10 0.987 0.989 0.802 0.890 0.940 0.985 0.932

1.3. [Meta-Test] Efficient Latency-constrained NAS combined with MetaD2A

You can reproduce latency-constrained NAS results with MetaD2A + HELP on unseen devices on NAS-Bench-201 search space (Table 4):

$ python main.py --search_space nasbench201 --mode 'nas' \
                 --load_path [Path of Checkpoint File] \
                 --sampled_arch_path 'data/nasbench201/arch_generated_by_metad2a.txt' \
                 --nas_target_device [Device] \ 
                 --latency_constraint [Latency Constraint] 

For example, if you use checkpoint file provided by this git repository, then path of checkpoint file is ./data/nasbench201/checkpoint/help_max_corr.pt, if you set target device as CPU Intel Gold 6226 (gold_6226) with batch size 256 and target latency constraint as 11.0 (ms), command is as follows:

$ python main.py --search_space nasbench201 --mode 'nas' \
                 --load_path './data/nasbench201/checkpoint/help_max_corr.pt' \
                 --sampled_arch_path 'data/nasbench201/arch_generated_by_metad2a.txt' \
                 --nas_target_device gold_6226 \ 
                 --latency_constraint 11.0 

or you can use provided script:

$ bash script/run_nas_metad2a.sh [GPU_NUM]

Efficient Latency-constrained NAS Results (Table 4)

Device # of Training Samples
from Target Device
Latency
Constraint (ms)
Latency
(ms)
Accuracy
(%)
Neural Architecture
Config
GPU Titan RTX
(Batch 256)
titan_rtx_256
10 18.0
21.0
25.0
17.8
18.9
24.2
69.7
71.5
71.8
link
link
link
CPU Intel Gold 6226
gold_6226
10 8.0
11.0
14.0
8.0
10.7
14.3
67.3
70.2
72.1
link
link
link
Mobile Pixel2
pixel2
10 14.0
18.0
22.0
13.0
19.0
25.0
69.7
71.8
73.2
link
link
link
ASIC-Eyeriss
eyeriss
10 5.0
7.0
9.0
3.9
5.1
9.1
71.5
71.8
73.5
link
link
link
FPGA
fpga
10 4.0
5.0
6.0
3.8
4.7
7.4
70.2
71.8
73.5
link
link
link

1.4. Meta-Training HELP model

Note that this process is performed only once for all NAS results.

$ python main.py --search_space nasbench201 \
                 --mode 'meta-train' \
                 --num_samples 10 \
                 --num_meta_train_sample 900 \
                 --meta_train_devices '1080ti_1,1080ti_32,1080ti_256,silver_4114,silver_4210r,samsung_a50,pixel3,essential_ph_1,samsung_s7' \
                 --meta_valid_devices 'titanx_1,titanx_32,titanx_256,gold_6240' \           
                 --meta_test_devices 'titan_rtx_256,gold_6226,fpga,pixel2,raspi4,eyeriss' \
                 --exp_name [EXP_NAME] \
                 --seed 3 # e.g.) 1, 2, 3

or you can use provided script:

$ bash script/run_meta_training_nasbench201.sh [GPU_NUM]

The results (checkpoint file, log file etc) are saved in

./results/nasbench201/[EXP_NAME]

2. Reproduce Main Results on FBNet Search Space

We provide the code to reproduce the main results on FBNet search space as follows:

  • Computing architecture ranking correlation between latencies estimated by HELP and true measured latencies on unseen devices (Table 2).
  • Meta-Training HELP model.

2.1. Data Preparation and Model Checkpoint

We include all required datasets and checkpoints in this github repository.

2.2. [Meta-Test] Architecture ranking correlation

You can compute architecture ranking correlation between latencies estimated by HELP and true measured latencies on unseen devices on FBNet search space (Table 2):

$ python main.py --search_space fbnet \
	--mode 'meta-test' \
	--num_samples 10 \
	--num_episodes 4000 \
	--num_meta_train_sample 4000 \
	--load_path './data/fbnet/checkpoint/help_max_corr.pt' \
	--meta_train_devices '1080ti_1,1080ti_32,1080ti_64,silver_4114,silver_4210r,samsung_a50,pixel3,essential_ph_1,samsung_s7' \
	--meta_valid_devices 'titanx_1,titanx_32,titanx_64,gold_6240' \
	--meta_test_devices 'fpga,raspi4,eyeriss'

or you can use provided script:

$ bash script/run_meta_test_fbnet.sh [GPU_NUM]

Architecture Ranking Correlation Results (Table 2)

Method Raspi4 ASIC FPGA Mean
MAML 0.718 0.763 0.727 0.736
Meta-SGD 0.821 0.822 0.776 0.806
HELP (Ours) 0.887 0.943 0.892 0.910

2.3. Meta-Training HELP model

Note that this process is performed only once for all results.

$ python main.py --search_space fbnet \
	--mode 'meta-train' \
	--num_samples 10 \
	--num_episodes 4000 \
	--num_meta_train_sample 4000 \
	--exp_name [EXP_NAME] \
	--meta_train_devices '1080ti_1,1080ti_32,1080ti_64,silver_4114,silver_4210r,samsung_a50,pixel3,essential_ph_1,samsung_s7' \
	--meta_valid_devices 'titanx_1,titanx_32,titanx_64,gold_6240' \
	--meta_test_devices 'fpga,raspi4,eyeriss' \
	--seed 3 # e.g.) 1, 2, 3

or you can use provided script:

$ bash script/run_meta_training_fbnet.sh [GPU_NUM]

The results (checkpoint file, log file etc) are saved in

./results/fbnet/[EXP_NAME]

3. Reproduce Main Results on OFA Search Space

We provide the code to reproduce the main results on OFA search space as follows:

  • Latency-constrained NAS Results with accuracy predictor of OFA + HELP on unseen devices (Table 5).
  • Validating obatined neural architecture on ImageNet-1K.
  • Meta-Training HELP model.

3.1. Data Preparation and Model Checkpoint

We include required datasets except ImageNet-1K, and checkpoints in this github repository. To validate obatined neural architecture on ImageNet-1K, you should download ImageNet-1K (2012 ver.)

3.2. [Meta-Test] Efficient Latency-constrained NAS combined with accuracy predictor of OFA

You can reproduce latency-constrained NAS results with OFA + HELP on unseen devices on OFA search space (Table 5):

python main.py \
	--search_space ofa \
	--mode nas \
	--num_samples 10 \
	--seed 3 \
	--num_meta_train_sample 4000 \
	--load_path './data/ofa/checkpoint/help_max_corr.pt' \
	--nas_target_device [DEVICE_NAME] \
	--latency_constraint [LATENCY_CONSTRAINT] \
	--exp_name 'nas' \
	--meta_train_devices '2080ti_1,2080ti_32,2080ti_64,titan_xp_1,titan_xp_32,titan_xp_64,v100_1,v100_32,v100_64' \
	--meta_valid_devices 'titan_rtx_1,titan_rtx_32' \
	--meta_test_devices 'titan_rtx_64' 

For example,

$ python main.py \
	--search_space ofa \
	--mode nas \
	--num_samples 10 \
	--seed 3 \
	--num_meta_train_sample 4000 \
	--load_path './data/ofa/checkpoint/help_max_corr.pt' \
	--nas_target_device titan_rtx_64 \
	--latency_constraint 20 \
	--exp_name 'nas' \
	--meta_train_devices '2080ti_1,2080ti_32,2080ti_64,titan_xp_1,titan_xp_32,titan_xp_64,v100_1,v100_32,v100_64' \
	--meta_valid_devices 'titan_rtx_1,titan_rtx_32' \
	--meta_test_devices 'titan_rtx_64' 

or you can use provided script:

$ bash script/run_nas_ofa.sh [GPU_NUM]

Efficient Latency-constrained NAS Results (Table 5)

Device Sample from
Target Device
Latency
Constraint (ms)
Latency
(ms)
Accuracy
(%)
Architecture
config
GPU Titan RTX
(Batch 64)
10 20
23
28
20.3
23.1
28.6
76.0
76.8
77.9
link
link
link
CPU Intel Gold 6226 20 170
190
147
171
77.6
78.1
link
link
Jetson AGX Xavier 10 65
70
67.4
76.4
75.9
76.4
link
link

3.3. Validating obtained neural architecture on ImageNet-1K

$ python validate_imagenet.py \
		--config_path [Path of neural architecture config file]
		--imagenet_save_path [Path of ImageNet 1k]

for example,

$ python validate_imagenet.py \
		--config_path 'data/ofa/architecture_config/gpu_titan_rtx_64/latency_28.6ms_accuracy_77.9.json' \
		--imagenet_save_path './ILSVRC2012'

3.4. Meta-training HELP model

Note that this process is performed only once for all results.

$ python main.py --search_space ofa \
		--mode 'meta-train' \
		--num_samples 10 \
		--num_meta_train_sample 4000 \
		--exp_name [EXP_NAME] \
                --meta_train_devices '2080ti_1,2080ti_32,2080ti_64,titan_xp_1,titan_xp_32,titan_xp_64,v100_1,v100_32,v100_64' \
                --meta_valid_devices 'titan_rtx_1,titan_rtx_32' \
                --meta_test_devices 'titan_rtx_64' \
		--seed 3 # e.g.) 1, 2, 3

or you can use provided script:

$ bash script/run_meta_training_ofa.sh [GPU_NUM]

4. Main Results on HAT Search Space

We provide the neural architecture configurations to reproduce the results of machine translation (WMT'14 En-De Task) on HAT search space.

Efficient Latency-constrained NAS Results

Task Device Samples from
Target Device
Latency BLEU score Architecture
Config
WMT'14 En-De GPU NVIDIA Titan RTX 10 74.0ms
106.5ms
27.19
27.44
link
link
WMT'14 En-De CPU Intel Xeon Gold 6240 10 159.6ms
343.2ms
27.20
27.52
link
link

You can test models by BLEU score and Computing Latency.

Reference

Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks (ICML17)

Meta-SGD: Learning to Learn Quickly for Few-Shot Learning

Once-for-All: Train One Network and Specialize it for Efficient Deployment (ICLR20)

NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search (ICLR20)

BRP-NAS: Prediction-based NAS using GCNs (NeurIPS20)

HAT: Hardware Aware Transformers for Efficient Natural Language Processing (ACL20)

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets (ICLR21)

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark (ICLR21)

Owner
Ph.D. student @ School of Computing, Korea Advanced Institute of Science and Technology (KAIST)
Combinatorial model of ligand-receptor binding

Combinatorial model of ligand-receptor binding The binding of ligands to receptors is the starting point for many import signal pathways within a cell

Mobolaji Williams 0 Jan 09, 2022
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

58 Nov 06, 2022
Shallow Convolutional Neural Networks for Human Activity Recognition using Wearable Sensors

-IEEE-TIM-2021-1-Shallow-CNN-for-HAR [IEEE TIM 2021-1] Shallow Convolutional Neural Networks for Human Activity Recognition using Wearable Sensors All

Wenbo Huang 1 May 17, 2022
"Domain Adaptive Semantic Segmentation without Source Data" (ACM MM 2021)

LDBE Pytorch implementation for two papers (the paper will be released soon): "Domain Adaptive Semantic Segmentation without Source Data", ACM MM2021.

benfour 16 Sep 28, 2022
Code for reproducing our paper: LMSOC: An Approach for Socially Sensitive Pretraining

LMSOC: An Approach for Socially Sensitive Pretraining Code for reproducing the paper LMSOC: An Approach for Socially Sensitive Pretraining to appear a

Twitter Research 11 Dec 20, 2022
Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and Tracking of Object Poses in 3D Space"

Sparse Steerable Convolution (SS-Conv) Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and

25 Dec 21, 2022
Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning

Graph-InfoClust-GIC [PAKDD 2021] PAKDD'21 version Graph InfoClust: Maximizing Coarse-Grain Mutual Information in Graphs Preprint version Graph InfoClu

Costas Mavromatis 21 Dec 03, 2022
Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite.

TFLite-HITNET-Stereo-depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in Tensorflow Lite. Stereo depth e

Ibai Gorordo 22 Oct 20, 2022
Convolutional Neural Network for 3D meshes in PyTorch

MeshCNN in PyTorch SIGGRAPH 2019 [Paper] [Project Page] MeshCNN is a general-purpose deep neural network for 3D triangular meshes, which can be used f

Rana Hanocka 1.4k Jan 04, 2023
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'

pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua

Naoto Inoue 873 Jan 06, 2023
这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer

Time Series Research with Torch 这个开源项目主要是对经典的时间序列预测算法论文进行复现,模型主要参考自GluonTS,框架主要参考自Informer。 建立原因 相较于mxnet和TF,Torch框架中的神经网络层需要提前指定输入维度: # 建立线性层 TensorF

Chi Zhang 85 Dec 29, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
Code for the CIKM 2019 paper "DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting".

Dual Self-Attention Network for Multivariate Time Series Forecasting 20.10.26 Update: Due to the difficulty of installation and code maintenance cause

Kyon Huang 223 Dec 16, 2022
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition

ademxapp Visual applications by the University of Adelaide In designing our Model A, we did not over-optimize its structure for efficiency unless it w

Zifeng Wu 338 Dec 12, 2022
PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.

D2C: Diffuison-Decoding Models for Few-shot Conditional Generation Project | Paper PyTorch implementation of D2C: Diffuison-Decoding Models for Few-sh

Jiaming Song 90 Dec 27, 2022
Sharpened cosine similarity torch - A Sharpened Cosine Similarity layer for PyTorch

Sharpened Cosine Similarity A layer implementation for PyTorch Install At your c

Brandon Rohrer 203 Nov 30, 2022
Detectron2 is FAIR's next-generation platform for object detection and segmentation.

Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up r

Facebook Research 23.3k Jan 08, 2023
Source Code of NeurIPS21 paper: Recognizing Vector Graphics without Rasterization

YOLaT-VectorGraphicsRecognition This repository is the official PyTorch implementation of our NeurIPS-2021 paper: Recognizing Vector Graphics without

Microsoft 49 Dec 20, 2022
The open-source and free to use Python package miseval was developed to establish a standardized medical image segmentation evaluation procedure

miseval: a metric library for Medical Image Segmentation EVALuation The open-source and free to use Python package miseval was developed to establish

59 Dec 10, 2022