A pytorch implementation of Reading Wikipedia to Answer Open-Domain Questions.

Overview

DrQA

A pytorch implementation of the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions (DrQA).

Reading comprehension is a task to produce an answer when given a question and one or more pieces of evidence (usually natural language paragraphs). Compared to question answering over knowledge bases, reading comprehension models are more flexible and have revealed a great potential for zero-shot learning.

SQuAD is a reading comprehension benchmark where there's only a single piece of evidence and the answer is guaranteed to be a part of the evidence. Since the publication of SQuAD dataset, there has been fast progress in the research of reading comprehension and a bunch of great models have come out. DrQA is one that is conceptually simpler than most others but still yields strong performance even as a single model.

The motivation for this project is to offer a clean version of DrQA for the machine reading comprehension task, so one can quickly do some modifications and try out new ideas. Click here to see the comparison with what's described in the original paper and with two "official" projects ParlAI and DrQA.

Requirements

Quick Start

Setup

  • download the project via git clone https://github.com/hitvoice/DrQA.git; cd DrQA
  • make sure python 3, pip, wget and unzip are installed.
  • install pytorch matched with your OS, python and cuda versions.
  • install the remaining requirements via pip install -r requirements.txt
  • download the SQuAD datafile, GloVe word vectors and Spacy English language models using bash download.sh.

Train

# prepare the data
python prepro.py
# train for 40 epochs with batchsize 32
python train.py -e 40 -bs 32

Warning: Running prepro.py takes about 9G memory when using 8 threads. If there's not enough memory on your machine, try reducing the number of threads used by the script, for example, python prepro.py --threads 2

Predict

python interact.py

Example interactions:

Evidence: Super Bowl 50 was an American football game to determine the champion of the National Football League (NFL) for the 2015 season. The American Football Conference (AFC) champion Denver Broncos defeated the National Football Conference (NFC) champion Carolina Panthers 24-10 to earn their third Super Bowl title. The game was played on February 7, 2016, at Levi's Stadium in the San Francisco Bay Area at Santa Clara, California.
Question: What day was the game played on?
Answer: February 7, 2016
Time: 0.0245s

Evidence: Super Bowl 50 was an American football game to determine the champion of the National Football League (NFL) for the 2015 season. The American Football Conference (AFC) champion Denver Broncos defeated the National Football Conference (NFC) champion Carolina Panthers 24-10 to earn their third Super Bowl title. The game was played on February 7, 2016, at Levi's Stadium in the San Francisco Bay Area at Santa Clara, California.
Question: What is the AFC short for?
Answer: The American Football Conference
Time: 0.0214s

Evidence: Beanie style with simple design. So cool to wear and make you different. It wears as peak cap and a fashion cap. It is good to match your clothes well during party and holiday, also makes you charming and fashion, leisure and fashion in public and streets. It suits all adults, for men or women. Matches well with your winter outfits so you stay warm all winter long.
Question: Is it for women?
Answer: It suits all adults, for men or women
Time: 0.0238s

The last example is a randomly picked product description from Amazon (not in SQuAD).

Results

EM & F1

EM F1
in the original paper 69.5 78.8
in this project 69.64 78.76
offical(Spacy) 69.71 78.94
offical(CoreNLP) 69.76 79.09

Compared with the official implementation:

Detailed Comparisons

Compared to what's described in the original paper:

  • The grammatical features are generated by spaCy instead of Stanford CoreNLP. It's much faster and produces similar scores.

Compared to the code in facebookresearch/DrQA:

  • This project is much more light-weighted and focusing solely on training and evaluating on SQuAD dataset while lacking the document retriever, the interactive inference API, and some other features.
  • The implementation in facebookresearch/DrQA is able to train on multiple GPUs, while (currently and for simplicity) in this implementation we only support single-GPU training.

Compared to the code in facebookresearch/ParlAI:

  • The DrQA model is no longer wrapped in a chatbot framework, which makes the code more readable, easier to modify and is faster to train. The preprocessing for text corpus is performed only once, while in a dialog framework raw text is transmitted each time and preprocessing for the same text must be done again and again.
  • This is a full implementation of the original paper, while the model in ParlAI is a partial implementation, missing all grammatical features (lemma, POS tags and named entity tags).
  • Some minor bug fixes. Some of them have been merged into ParlAI.

About

Maintainer: Runqi Yang.

Credits: thank Jun Yang for code review and advice.

Most of the pytorch model code is borrowed from Facebook/ParlAI under a BSD-3 license.

Owner
Runqi Yang
ML engineer @Alibaba. Interested in conversational systems and deep learning.
Runqi Yang
Contrastive Learning for Compact Single Image Dehazing, CVPR2021

AECR-Net Contrastive Learning for Compact Single Image Dehazing, CVPR2021. Official Pytorch based implementation. Paper arxiv Pytorch Version TODO: mo

glassy 253 Jan 01, 2023
[ICCV'21] Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment

CKDN The official implementation of the ICCV2021 paper "Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment" O

Multimedia Research 50 Dec 13, 2022
A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squares.

W.I.P-Aim-Memory-Game A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squar

dE_soot 1 Dec 08, 2021
🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

Realcat 270 Jan 07, 2023
Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021)

Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021) Zeyu Wang, Sherry Qiu, Nicole Feng, Holly Rushmeier, Leonard McMill

Zach Zeyu Wang 23 Dec 09, 2022
Official code repository for the publication "Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons"

Latent Equilibrium: A unified learning theory for arbitrarily fast computation with arbitrarily slow neurons This repository contains the code to repr

Computational Neuroscience, University of Bern 3 Aug 04, 2022
A simple version for graphfpn

GraphFPN: Graph Feature Pyramid Network for Object Detection Download graph-FPN-main.zip For training , run: python train.py For test with Graph_fpn

WorldGame 67 Dec 25, 2022
This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems

Stability Audit This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems, Humantic

Data, Responsibly 4 Oct 27, 2022
Omnidirectional camera calibration in python

Omnidirectional Camera Calibration Key features pure python initial solution based on A Toolbox for Easily Calibrating Omnidirectional Cameras (Davide

Thomas Pönitz 12 Nov 22, 2022
TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

Microsoft 1.3k Dec 30, 2022
Official implementation of "SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers"

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 31, 2022
Improving Object Detection by Label Assignment Distillation

Improving Object Detection by Label Assignment Distillation This is the official implementation of the WACV 2022 paper Improving Object Detection by L

Cybercore Co. Ltd 51 Dec 08, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"

Deformable Attention Implementation of Deformable Attention from this paper in Pytorch, which appears to be an improvement to what was proposed in DET

Phil Wang 128 Dec 24, 2022
Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation

Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation Official PyTorch implementation for the paper Look

Rishabh Jangir 20 Nov 24, 2022
Knowledge Management for Humans using Machine Learning & Tags

HyperTag HyperTag helps humans intuitively express how they think about their files using tags and machine learning.

Ravn Tech, Inc. 165 Nov 04, 2022
Image Lowpoly based on Centroid Voronoi Diagram via python-opencv and taichi

CVTLowpoly: Image Lowpoly via Centroid Voronoi Diagram Image Sharp Feature Extraction using Guide Filter's Local Linear Theory via opencv-python. The

Pupa 4 Jul 29, 2022
SoK: Vehicle Orientation Representations for Deep Rotation Estimation

SoK: Vehicle Orientation Representations for Deep Rotation Estimation Raymond H. Tu, Siyuan Peng, Valdimir Leung, Richard Gao, Jerry Lan This is the o

FIRE Capital One Machine Learning of the University of Maryland 12 Oct 07, 2022
This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''.

Sparse VAE This repository contains the code for the paper ``Identifiable VAEs via Sparse Decoding''. Data Sources The datasets used in this paper wer

Gemma Moran 17 Dec 12, 2022