TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

Related tags

Deep LearningTGRNet
Overview

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition." arXiv preprint arXiv:2106.10598 (2021).

This work has been accepted for presentation at ICCV2021. The preview version has released at arXiv.org (https://arxiv.org/abs/2106.10598).

Abstract

A table arranging data in rows and columns is a very effective data structure, which has been widely used in business and scientific research. Considering large-scale tabular data in online and offline documents, automatic table recognition has attracted increasing attention from the document analysis community. Though human can easily understand the structure of tables, it remains a challenge for machines to understand that, especially due to a variety of different table layouts and styles. Existing methods usually model a table as either the markup sequence or the adjacency matrix between different table cells, failing to address the importance of the logical location of table cells, e.g., a cell is located in the first row and the second column of the table. In this paper, we reformulate the problem of table structure recognition as the table graph reconstruction, and propose an end-to-end trainable table graph reconstruction network (TGRNet) for table structure recognition. Specifically, the proposed method has two main branches, a cell detection branch and a cell logical location branch, to jointly predict the spatial location and the logical location of different cells. Experimental results on three popular table recognition datasets and a new dataset with table graph annotations (TableGraph-350K) demonstrate the effectiveness of the proposed TGRNet for table structure recognition.

Getting Started

Requirements

Create the environment from the environment.yml file conda env create --file environment.yml or install the software needed in your environment independently. If you meet some problems when installing PyTorch Geometric, please follow the official installation indroduction (https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html).

dependencies:
  - python==3.7.0
  - pip==20.2.4
  - pip:
    - dominate==2.5.1
    - imageio==2.8.0
    - networkx==2.3
    - numpy==1.18.2
    - opencv-python==4.4.0.46
    - pandas==1.0.3
    - pillow==7.1.1
    - torchfile==0.1.0
    - tqdm==4.45.0
    - visdom==0.1.8.9
    - Polygon3==3.0.8

PyTorch Installation

# CUDA 10.2
pip install torch==1.5.0 torchvision==0.6.0
# CUDA 10.1
pip install torch==1.5.0+CU101 torchvision==0.6.0+CU101 -f https://download.pytorch.org/whl/torch_stable.html
# CUDA 9.2
pip install torch==1.5.0+CU92 torchvision==0.6.0+CU92 -f https://download.pytorch.org/whl/torch_stable.html

PyTorch Geometric Installation

pip install torch-scatter==2.0.4 -f https://pytorch-geometric.com/whl/torch-1.5.0+${CUDA}.html
pip install torch-sparse==0.6.3 -f https://pytorch-geometric.com/whl/torch-1.5.0+${CUDA}.html
pip install torch-cluster==1.5.4 -f https://pytorch-geometric.com/whl/torch-1.5.0+${CUDA}.html
pip install torch-spline-conv==1.2.0 -f https://pytorch-geometric.com/whl/torch-1.5.0+${CUDA}.html
pip install torch-geometric

where ${CUDA} should be replaced by your specific CUDA version (cu92, cu101, cu102).

Datasets Preparation

cd ./datasets
tar -zxvf datasets.tar.gz
## The './datasets/' folder should look like:
- datasets/
  - cmdd/
  - icdar13table/
  - icdar19_ctdar/
  - tablegraph24k/

Pretrained Models Preparation

IMPORTANT Acoording to feedbacks from users (I also tested by myself), the pretrained models may not work for some enviroments. I have tested the following enviroment that can work as expected.

  - CUDA 9.2
  - torch 1.7.0+torchvision 0.8.0
  - torch-cluster 1.5.9
  - torch-geometric 1.6.3
  - torch-scatter 2.0.6
  - torch-sparse 0.6.9
  - torch-spline-conv 1.2.1
  • Download pretrained models from Google Dive or Alibaba Cloud.
  • Put checkpoints.tar.gz in "./checkpoints/" and extract it.
cd ./checkpoints
tar -zxvf checkpoints.tar.gz
## The './checkpoints/' folder should look like:
- checkpoints/
  - cmdd_overall/
  - icdar13table_overall/
  - icdar19_lloc/
  - tablegraph24k_overall/

Test

We have prepared scripts for test and you can just run them.

- test_cmdd.sh
- test_icdar13table.sh
- test_tablegraph-24k.sh
- test_icdar19ctdar.sh

Train

Todo

Owner
Wenyuan
Beijing Jiaotong University
Wenyuan
Prediction of MBA refinance Index (Mortgage prepayment)

Prediction of MBA refinance Index (Mortgage prepayment) Deep Neural Network based Model The ability to predict mortgage prepayment is of critical use

Ruchil Barya 1 Jan 16, 2022
一个多模态内容理解算法框架,其中包含数据处理、预训练模型、常见模型以及模型加速等模块。

Overview 架构设计 插件介绍 安装使用 框架简介 方便使用,支持多模态,多任务的统一训练框架 能力列表: bert + 分类任务 自定义任务训练(插件注册) 框架设计 框架采用分层的思想组织模型训练流程。 DATA 层负责读取用户数据,根据 field 管理数据。 Parser 层负责转换原

Tencent 265 Dec 22, 2022
Framework for training options with different attention mechanism and using them to solve downstream tasks.

Using Attention in HRL Framework for training options with different attention mechanism and using them to solve downstream tasks. Requirements GPU re

5 Nov 03, 2022
Official Repo of my work for SREC Nandyal Machine Learning Bootcamp

About the Bootcamp A 3-day Machine Learning Bootcamp organised by Department of Electronics and Communication Engineering, Santhiram Engineering Colle

MS 1 Nov 29, 2021
GitHub repository for "Improving Video Generation for Multi-functional Applications"

Improving Video Generation for Multi-functional Applications GitHub repository for "Improving Video Generation for Multi-functional Applications" Pape

Bernhard Kratzwald 328 Dec 07, 2022
Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Neural Networks.

Dynamic-Graphs-Construction Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Ne

11 Dec 14, 2022
Code for Referring Image Segmentation via Cross-Modal Progressive Comprehension, CVPR2020.

CMPC-Refseg Code of our CVPR 2020 paper Referring Image Segmentation via Cross-Modal Progressive Comprehension. Shaofei Huang*, Tianrui Hui*, Si Liu,

spyflying 55 Dec 01, 2022
Code for the paper: Hierarchical Reinforcement Learning With Timed Subgoals, published at NeurIPS 2021

Hierarchical reinforcement learning with Timed Subgoals (HiTS) This repository contains code for reproducing experiments from our paper "Hierarchical

Autonomous Learning Group 21 Dec 03, 2022
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022
You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks.

AllSet This is the repo for our paper: You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks. We prepared all codes and a subse

Jianhao 51 Dec 24, 2022
T2F: text to face generation using Deep Learning

⭐ [NEW] ⭐ T2F - 2.0 Teaser (coming soon ...) Please note that all the faces in the above samples are generated ones. The T2F 2.0 will be using MSG-GAN

Animesh Karnewar 533 Dec 22, 2022
BuildingNet: Learning to Label 3D Buildings

BuildingNet This is the implementation of the BuildingNet architecture described in this paper: Paper: BuildingNet: Learning to Label 3D Buildings Arx

16 Nov 07, 2022
Official implementation of Long-Short Transformer in PyTorch.

Long-Short Transformer (Transformer-LS) This repository hosts the code and models for the paper: Long-Short Transformer: Efficient Transformers for La

NVIDIA Corporation 198 Dec 29, 2022
[NeurIPS'20] Self-supervised Co-Training for Video Representation Learning. Tengda Han, Weidi Xie, Andrew Zisserman.

CoCLR: Self-supervised Co-Training for Video Representation Learning This repository contains the implementation of: InfoNCE (MoCo on videos) UberNCE

Tengda Han 271 Jan 02, 2023
Creative Applications of Deep Learning w/ Tensorflow

Creative Applications of Deep Learning w/ Tensorflow This repository contains lecture transcripts and homework assignments as Jupyter Notebooks for th

Parag K Mital 1.5k Dec 30, 2022
PyTorch implementation of "Simple and Deep Graph Convolutional Networks"

Simple and Deep Graph Convolutional Networks This repository contains a PyTorch implementation of "Simple and Deep Graph Convolutional Networks".(http

chenm 253 Dec 08, 2022
Easy-to-use micro-wrappers for Gym and PettingZoo based RL Environments

SuperSuit introduces a collection of small functions which can wrap reinforcement learning environments to do preprocessing ('microwrappers'). We supp

Farama Foundation 357 Jan 06, 2023
4K videos with annotated masks in our ICCV2021 paper 'Internal Video Inpainting by Implicit Long-range Propagation'.

Annotated 4K Videos paper | project website | code | demo video 4K videos with annotated object masks in our ICCV2021 paper: Internal Video Inpainting

Tengfei Wang 21 Nov 05, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022