A playable implementation of Fully Convolutional Networks with Keras.

Overview

keras-fcn

Build Status codecov License: MIT

A re-implementation of Fully Convolutional Networks with Keras

Installation

Dependencies

  1. keras
  2. tensorflow

Install with pip

$ pip install git+https://github.com/JihongJu/keras-fcn.git

Build from source

$ git clone https://github.com/JihongJu/keras-fcn.git
$ cd keras-fcn
$ pip install --editable .

Usage

FCN with VGG16

from keras_fcn import FCN
fcn_vgg16 = FCN(input_shape=(500, 500, 3), classes=21,  
                weights='imagenet', trainable_encoder=True)
fcn_vgg16.compile(optimizer='rmsprop',
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])
fcn_vgg16.fit(X_train, y_train, batch_size=1)

FCN with VGG19

from keras_fcn import FCN
fcn_vgg19 = FCN_VGG19(input_shape=(500, 500, 3), classes=21,  
                      weights='imagenet', trainable_encoder=True)
fcn_vgg19.compile(optimizer='rmsprop',
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])
fcn_vgg19.fit(X_train, y_train, batch_size=1)

Custom FCN (VGG16 as an example)

from keras.layers import Input
from keras.models import Model
from keras_fcn.encoders import Encoder
from keras_fcn.decoders import VGGUpsampler
from keras_fcn.blocks import (vgg_conv, vgg_fc)
inputs = Input(shape=(224, 224, 3))
blocks = [vgg_conv(64, 2, 'block1'),
          vgg_conv(128, 2, 'block2'),
          vgg_conv(256, 3, 'block3'),
          vgg_conv(512, 3, 'block4'),
          vgg_conv(512, 3, 'block5'),
          vgg_fc(4096)]
encoder = Encoder(inputs, blocks, weights='imagenet',
                  trainable=True)
feat_pyramid = encoder.outputs   # A feature pyramid with 5 scales
feat_pyramid = feat_pyramid[:3]  # Select only the top three scale of the pyramid
feat_pyramid.append(inputs)      # Add image to the bottom of the pyramid


outputs = VGGUpsampler(feat_pyramid, scales=[1, 1e-2, 1e-4], classes=21)
outputs = Activation('softmax')(outputs)

fcn_custom = Model(inputs=inputs, outputs=outputs)

And implement a custom Fully Convolutional Network becomes simply define a series of convolutional blocks that one stacks on top of another.

Custom decoders

from keras_fcn.blocks import vgg_upsampling
from keras_fcn.decoders import Decoder
decode_blocks = [
vgg_upsampling(classes=21, target_shape=(None, 14, 14, None), scale=1),            
vgg_upsampling(classes=21, target_shape=(None, 28, 28, None),  scale=0.01),
vgg_upsampling(classes=21, target_shape=(None, 224, 224, None),  scale=0.0001)
]
outputs = Decoder(feat_pyramid[-1], decode_blocks)

The decode_blocks can be customized as well.

from keras_fcn.layers import BilinearUpSampling2D

def vgg_upsampling(classes, target_shape=None, scale=1, block_name='featx'):
    """A VGG convolutional block with bilinear upsampling for decoding.

    :param classes: Integer, number of classes
    :param scale: Float, scale factor to the input feature, varing from 0 to 1
    :param target_shape: 4D Tuples with targe_height, target_width as
    the 2nd, 3rd elements if `channels_last` or as the 3rd, 4th elements if
    `channels_first`.

    >>> from keras_fcn.blocks import vgg_upsampling
    >>> feat1, feat2, feat3 = feat_pyramid[:3]
    >>> y = vgg_upsampling(classes=21, target_shape=(None, 14, 14, None),
    >>>                    scale=1, block_name='feat1')(feat1, None)
    >>> y = vgg_upsampling(classes=21, target_shape=(None, 28, 28, None),
    >>>                    scale=1e-2, block_name='feat2')(feat2, y)
    >>> y = vgg_upsampling(classes=21, target_shape=(None, 224, 224, None),
    >>>                    scale=1e-4, block_name='feat3')(feat3, y)

    """
    def f(x, y):
        score = Conv2D(filters=classes, kernel_size=(1, 1),
                       activation='linear',
                       padding='valid',
                       kernel_initializer='he_normal',
                       name='score_{}'.format(block_name))(x)
        if y is not None:
            def scaling(xx, ss=1):
                return xx * ss
            scaled = Lambda(scaling, arguments={'ss': scale},
                            name='scale_{}'.format(block_name))(score)
            score = add([y, scaled])
        upscore = BilinearUpSampling2D(
            target_shape=target_shape,
            name='upscore_{}'.format(block_name))(score)
        return upscore
    return f

Try Examples

  1. Download VOC2011 dataset
$ wget "http://host.robots.ox.ac.uk/pascal/VOC/voc2011/VOCtrainval_25-May-2011.tar"
$ tar -xvzf VOCtrainval_25-May-2011.tar
$ mkdir ~/Datasets
$ mv TrainVal/VOCdevkit/VOC2011 ~/Datasets
  1. Mount dataset from host to container and start bash in container image

From repository keras-fcn

$ nvidia-docker run -it --rm -v `pwd`:/root/workspace -v ${Home}/Datasets/:/root/workspace/data jihong/keras-gpu bash

or equivalently,

$ make bash
  1. Within the container, run the following codes.
$ cd ~/workspace
$ pip setup.py -e .
$ cd voc2011
$ python train.py

More details see source code of the example in Training Pascal VOC2011 Segmention

Model Architecture

FCN8s with VGG16 as base net:

fcn_vgg16

TODO

  • Add ResNet
Owner
JihongJu
🤓
JihongJu
Pip-package for trajectory benchmarking from "Be your own Benchmark: No-Reference Trajectory Metric on Registered Point Clouds", ECMR'21

Map Metrics for Trajectory Quality Map metrics toolkit provides a set of metrics to quantitatively evaluate trajectory quality via estimating consiste

Mobile Robotics Lab. at Skoltech 31 Oct 28, 2022
This script runs neural style transfer against the provided content image.

Neural Style Transfer Content Style Output Description: This script runs neural style transfer against the provided content image. The content image m

Martynas Subonis 0 Nov 25, 2021
Notebooks for my "Deep Learning with TensorFlow 2 and Keras" course

Deep Learning with TensorFlow 2 and Keras – Notebooks This project accompanies my Deep Learning with TensorFlow 2 and Keras trainings. It contains the

Aurélien Geron 1.9k Dec 15, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a

Tianxiang Sun 149 Jan 04, 2023
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
ICLR2021 (Under Review)

Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning This repository contains the official PyTorch implementation o

Haoyi Fan 58 Dec 30, 2022
OpenDelta - An Open-Source Framework for Paramter Efficient Tuning.

OpenDelta is a toolkit for parameter efficient methods (we dub it as delta tuning), by which users could flexibly assign (or add) a small amount parameters to update while keeping the most paramters

THUNLP 386 Dec 26, 2022
Learning cell communication from spatial graphs of cells

ncem Features Repository for the manuscript Fischer, D. S., Schaar, A. C. and Theis, F. Learning cell communication from spatial graphs of cells. 2021

Theis Lab 77 Dec 30, 2022
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Created by Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas from Sta

Charles R. Qi 4k Dec 30, 2022
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 864 Dec 30, 2022
An SMPC companion library for Syft

SyMPC A library that extends PySyft with SMPC support SyMPC /ˈsɪmpəθi/ is a library which extends PySyft ≥0.3 with SMPC support. It allows computing o

Arturo Marquez Flores 0 Oct 13, 2021
[ACM MM 2021] Yes, "Attention is All You Need", for Exemplar based Colorization

Transformer for Image Colorization This is an implemention for Yes, "Attention Is All You Need", for Exemplar based Colorization, and the current soft

Wang Yin 30 Dec 07, 2022
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022
Real-Time Multi-Contact Model Predictive Control via ADMM

Here, you can find the code for the paper 'Real-Time Multi-Contact Model Predictive Control via ADMM'. Code is currently being cleared up and optimize

17 Dec 28, 2022
[CVPR 2022 Oral] EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation

EPro-PnP EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation In CVPR 2022 (Oral). [paper] Hanshen

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 842 Jan 04, 2023
Implementation of CaiT models in TensorFlow and ImageNet-1k checkpoints. Includes code for inference and fine-tuning.

CaiT-TF (Going deeper with Image Transformers) This repository provides TensorFlow / Keras implementations of different CaiT [1] variants from Touvron

Sayak Paul 9 Jun 26, 2022
[ICCV-2021] An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation

An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation (ICCV 2021) Introduction This is an official pytorch implemen

rongchangxie 42 Jan 04, 2023
Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"

FLASH - Pytorch Implementation of the Transformer variant proposed in the paper Transformer Quality in Linear Time Install $ pip install FLASH-pytorch

Phil Wang 209 Dec 28, 2022
Public implementation of "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression" from CoRL'21

Self-Supervised Reward Regression (SSRR) Codebase for CoRL 2021 paper "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression "

19 Dec 12, 2022
Multivariate Time Series Transformer, public version

Multivariate Time Series Transformer Framework This code corresponds to the paper: George Zerveas et al. A Transformer-based Framework for Multivariat

363 Jan 03, 2023