The official implementation of CVPR 2021 Paper: Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation.

Overview

Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation

This repository is the official implementation of CVPR 2021 paper: Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation.

Requirements

  • Tensorflow-1-15

Training

To train the NCE model(s) in the paper, run this command:

python train_nce_distill_model.py \
  --region_feat_path=region_features.hdf5 \
  --phrase_feat_path=phrase_features.hdf5 \
  --glove_path=glove.hdf5

To train the NCE+Distill model(s) in the paper, run this command:

python train_nce_distill_model.py \
  --region_feat_path=region_features.hdf5 \
  --phrase_feat_path=phrase_features.hdf5 \
  --glove_path=glove.hdf5 \
  --phrase_to_label_json=phrase_to_label.json

Evaluation

To evaluate the model on Flickr30K, run:

python eval_model.py \
  --region_feat_path=region_features_test.hdf5 \
  --phrase_feat_path=phrase_features_test.hdf5 \
  --glove_path=glove.hdf5 \
  --restore_path=checkpoint.meta

Pre-trained Models

You can download pretrained models using Res101 VG features here:

You can also find the features on Flickr30K test split here.

The pretrained models achieve the following performance on Flickr30K test split:

Model Name [email protected] [email protected] [email protected]
NCE+Distill 0.5310 0.7394 0.7875
NCE 0.5135 0.7338 0.7833

Citation

If you use our implementation in your research or wish to refer to the results published in our paper, please use the following BibTeX entry.

@InProceedings{Wang_2021_CVPR,
    author    = {Wang, Liwei and Huang, Jing and Li, Yin and Xu, Kun and Yang, Zhengyuan and Yu, Dong},
    title     = {Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {14090-14100}
}

Official implementation of "Accelerating Reinforcement Learning with Learned Skill Priors", Pertsch et al., CoRL 2020

Accelerating Reinforcement Learning with Learned Skill Priors [Project Website] [Paper] Karl Pertsch1, Youngwoon Lee1, Joseph Lim1 1CLVR Lab, Universi

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 134 Dec 06, 2022
Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ryuichiro Hataya 50 Dec 05, 2022
Fewshot-face-translation-GAN - Generative adversarial networks integrating modules from FUNIT and SPADE for face-swapping.

Few-shot face translation A GAN based approach for one model to swap them all. The table below shows our priliminary face-swapping results requiring o

768 Dec 24, 2022
Reinforcement Learning for finance

Reinforcement Learning for Finance We apply reinforcement learning for stock trading. Fetch Data Example import utils # fetch symbols from yahoo fina

Tomoaki Fujii 159 Jan 03, 2023
Convert onnx models to pytorch.

onnx2torch onnx2torch is an ONNX to PyTorch converter. Our converter: Is easy to use – Convert the ONNX model with the function call convert; Is easy

ENOT 264 Dec 30, 2022
Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution

unfoldedVBA Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution This repository contains the Pytorch implementation of the unrolled

Yunshi HUANG 2 Jul 10, 2022
Potato Disease Classification - Training, Rest APIs, and Frontend to test.

Potato Disease Classification Setup for Python: Install Python (Setup instructions) Install Python packages pip3 install -r training/requirements.txt

codebasics 95 Dec 21, 2022
Corruption Invariant Learning for Re-identification

Corruption Invariant Learning for Re-identification The official repository for Benchmarks for Corruption Invariant Person Re-identification (NeurIPS

Minghui Chen 73 Dec 08, 2022
PyTorch implementation of MuseMorphose, a Transformer-based model for music style transfer.

MuseMorphose This repository contains the official implementation of the following paper: Shih-Lun Wu, Yi-Hsuan Yang MuseMorphose: Full-Song and Fine-

Yating Music, Taiwan AI Labs 142 Jan 08, 2023
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

NVIDIA Corporation 1.8k Dec 30, 2022
A PyTorch Library for Accelerating 3D Deep Learning Research

Kaolin: A Pytorch Library for Accelerating 3D Deep Learning Research Overview NVIDIA Kaolin library provides a PyTorch API for working with a variety

NVIDIA GameWorks 3.5k Jan 07, 2023
DM-ACME compatible implementation of the Arm26 environment from Mujoco

ACME-compatible implementation of Arm26 from Mujoco This repository contains a customized implementation of Mujoco's Arm26 model, that can be used wit

1 Dec 24, 2021
Generative Models as a Data Source for Multiview Representation Learning

GenRep Project Page | Paper Generative Models as a Data Source for Multiview Representation Learning Ali Jahanian, Xavier Puig, Yonglong Tian, Phillip

Ali 81 Dec 03, 2022
Deep Learning applied to Integral data analysis

DeepIntegralCompton Deep Learning applied to Integral data analysis Module installation Move to the root directory of the project and execute : pip in

Thomas Vuillaume 1 Dec 10, 2021
An implementation of the paper "A Neural Algorithm of Artistic Style"

A Neural Algorithm of Artistic Style implementation - Neural Style Transfer This is an implementation of the research paper "A Neural Algorithm of Art

Srijarko Roy 27 Sep 20, 2022
K-Means Clustering and Hierarchical Clustering Unsupervised Learning Solution in Python3.

Unsupervised Learning - K-Means Clustering and Hierarchical Clustering - The Heritage Foundation's Economic Freedom Index Analysis 2019 - By David Sal

David Salako 1 Jan 12, 2022
A PyTorch implementation of "Semi-Supervised Graph Classification: A Hierarchical Graph Perspective" (WWW 2019)

SEAL ⠀⠀⠀ A PyTorch implementation of Semi-Supervised Graph Classification: A Hierarchical Graph Perspective (WWW 2019) Abstract Node classification an

Benedek Rozemberczki 202 Dec 27, 2022
MoveNet Single Pose on DepthAI

MoveNet Single Pose tracking on DepthAI Running Google MoveNet Single Pose models on DepthAI hardware (OAK-1, OAK-D,...). A convolutional neural netwo

64 Dec 29, 2022
Detail-Preserving Transformer for Light Field Image Super-Resolution

DPT Official Pytorch implementation of the paper "Detail-Preserving Transformer for Light Field Image Super-Resolution" accepted by AAAI 2022 . Update

50 Jan 01, 2023
Pytorch implementation of Generative Models as Distributions of Functions 🌿

Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function

Emilien Dupont 117 Dec 29, 2022