Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness?

Overview

Adversrial Machine Learning Benchmarks

This code belongs to the papers:

For this framework, please cite:

@inproceedings{
lorenz2022is,
title={Is AutoAttack/AutoBench a suitable Benchmark for Adversarial Robustness?},
author={Peter Lorenz and Dominik Strassel and Margret Keuper and Janis Keuper},
booktitle={The AAAI-22 Workshop on Adversarial Machine Learning and Beyond},
year={2022},
url={https://openreview.net/forum?id=aLB3FaqoMBs}
}

This repository is an expansion of https://github.com/paulaharder/SpectralAdversarialDefense, but has some new features:

  • Several runs can be saved for calculating the variance of the results.
  • new attack method: AutoAttack.
  • datasets: imagenet32, imagenet64, imagenet128, imagenet, celebahq32, celebahq64, and celebahq128.
  • new model: besides VGG-16 we trained a model WideResNet28-10, except for imagenet (used the standard pytorch model.)
  • bash scripts: Automatic starts various combination of input parameters
  • automatic .csv creation from all results.

Overview

overview

This image shows the pipeline from training a model, generating adversarial examples to defend them.

  1. Training: Models are trained. Pre-trained models are provided (WideResNet28-10: cif10, cif100, imagenet32, imagenet64, imagenet128, celebaHQ32, celebaHQ64, celebaHQ128; WideResNet51-2: ImageNet; VGG16: cif10 and cif100)
  2. Generate Clean Data: Only correctly classfied samples are stored via torch.save.
  3. Attacks: On this clean data severa atttacks can be executed: FGSM, BIM, AutoAttack (Std), PGD, DF and CW.
  4. Detect Feature: Detectors try to distinguish between attacked and not-attacked images.
  5. Evaluation Detect: Is the management script for handling several runs and extract the results to one .csv file.

Requirements

  • GPUs: A100 (40GB), Titan V (12GB) or GTX 1080 (12GB)
  • CUDA 11.1
  • Python 3.9.5
  • PyTorch 1.9.0
  • cuDNN 8.0.5_0

Clone the repository

$ git clone --recurse-submodules https://github.com/adverML/SpectralDef_Framework
$ cd SpectralDef_Framework

and install the requirements

$ conda create --name cuda--11-1-1--pytorch--1-9-0 -f requirements.yml
$ conda activate cuda--11-1-1--pytorch--1-9-0

There are two possiblities: Either use our data set with existing adversarial examples (not provided yet), in this case follow the instructions under 'Download' or generate the examples by yourself, by going threw 'Data generation'. For both possibilities conclude with 'Build a detector'.

Download

Download the adversarial examples (not provided yet) and their non-adversarial counterparts as well as the trained VGG-16 networks from: https://www.kaggle.com/j53t3r/weights. Extract the folders for the adversarial examples into /data and the models in the main directory. Afterwards continue with 'Build detector'.

Datasets download

These datasets are supported:

Download and copy the weights into data/datasets/. In case of troubles, adapt the paths in conf/global_settings.py.

Model download

To get the weights for all networks for CIFAR-10 and CIFAR-100, ImageNet and CelebaHQ download:

  1. Kaggle Download Weights
  2. Copy the weights into data/weights/.

In case of troubles, adapt the paths in conf/global_settings.py. You are welcome to create an issue on Github.

Data generation

Train the VGG16 on CIFAR-10:

$ python train_cif10.py

or on CIFAR-100

$ python train_cif100.py

The following skript will download the CIFAR-10/100 dataset and extract the CIFAR10/100 (imagenet32, imagenet64, imagenet128, celebAHQ32, ...) images, which are correctly classified by the network by running. Use --net cif10 for CIFAR-10 and --net cif100 for CIFAR-100

$ # python generate_clean_data.py -h  // for help
$ python generate_clean_data.py --net cif10

Then generate the adversarial examples, argument can be fgsm (Fast Gradient Sign Method), bim (Basic Iterative Method), pgd (Projected Gradient Descent), [new] std (AutoAttack Standard), df (Deepfool), cw (Carlini and Wagner), :

$ # python attack.py -h  // for help
$ python attack.py --attack fgsm

Build detector

First extract the necessary characteristics to train a detector, choose a detector out of InputMFS (BlackBox - BB), InputPFS, LayerMFS (WhiteBox - WB), LayerPFS, LID, Mahalanobis adn an attack argument as before:

$ # python extract_characteristics.py -h  // for help
$ python extract_characteristics.py --attack fgsm --detector InputMFS

Then, train a classifier on the characteristics for a specific attack and detector:

$ python detect_adversarials.py --attack fgsm --detector InputMFS

[new] Create csv file

At the end of the file evaluation_detection.py different possibilities are shown:

$ python evaluation_detection.py 

Note that: layers=False for evaluating the detectors after the the right layers are selected.

Other repositories used

You might also like...
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Code repository accompanying the paper "On Adversarial Robustness: A Neural Architecture Search perspective"

On Adversarial Robustness: A Neural Architecture Search perspective Preparation: Clone the repository: https://github.com/tdchaitanya/nas-robustness.g

Hierarchical-Bayesian-Defense - Towards Adversarial Robustness of Bayesian Neural Network through Hierarchical Variational Inference (Openreview) Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)
Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)

Flickr-Faces-HQ Dataset (FFHQ) Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark
Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark Yong

Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.

Adversarial Training Against Location-Optimized Adversarial Patches arXiv | Paper | Code | Video | Slides Code for the paper: Sukrut Rao, David Stutz,

Adversarial Color Enhancement: Generating Unrestricted Adversarial Images by Optimizing a Color Filter

ACE Please find the preliminary version published at BMVC 2020 in the folder BMVC_version, and its extended journal version in Journal_version. Datase

transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛
transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛

transfer_adv CVPR-2021 AIC-VI: unrestricted Adversarial Attacks on ImageNet CVPR2021 安全AI挑战者计划第六期赛道2:ImageNet无限制对抗攻击 介绍 : 深度神经网络已经在各种视觉识别问题上取得了最先进的性能。

Adversarial-Information-Bottleneck - Distilling Robust and Non-Robust Features in Adversarial Examples by Information Bottleneck (NeurIPS21)
Releases(v1.0.7)
Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

Implementation of the ivis algorithm as described in the paper Structure-preserving visualisation of high dimensional single-cell datasets.

beringresearch 285 Jan 04, 2023
Syllabus del curso IIC2115 - Programación como Herramienta para la Ingeniería 2022/I

IIC2115 - Programación como Herramienta para la Ingeniería Videos y tutoriales Tutorial CMD Tutorial Instalación Python y Jupyter Tutorial de git-GitH

21 Nov 09, 2022
Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images

SASSnet Code for paper: Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images(MICCAI 2020) Our code is origin from UA-MT You can fin

klein 125 Jan 03, 2023
VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning

VisualGPT Our Paper VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning Main Architecture of Our VisualGPT Downloa

Vision CAIR Research Group, KAUST 140 Dec 28, 2022
A library for differentiable nonlinear optimization.

Theseus A library for differentiable nonlinear optimization built on PyTorch to support constructing various problems in robotics and vision as end-to

Meta Research 1.1k Dec 30, 2022
Point Cloud Registration Network

PCRNet: Point Cloud Registration Network using PointNet Encoding Source Code Author: Vinit Sarode and Xueqian Li Paper | Website | Video | Pytorch Imp

ViNiT SaRoDe 59 Nov 19, 2022
SegNet-Basic with Keras

SegNet-Basic: What is Segnet? Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-wise Image Segmentation Segnet = (Encoder + Decoder)

Yad Konrad 81 Jun 30, 2022
PyTorch implementation of DeepLab v2 on COCO-Stuff / PASCAL VOC

DeepLab with PyTorch This is an unofficial PyTorch implementation of DeepLab v2 [1] with a ResNet-101 backbone. COCO-Stuff dataset [2] and PASCAL VOC

Kazuto Nakashima 995 Jan 08, 2023
EfficientDet (Scalable and Efficient Object Detection) implementation in Keras and Tensorflow

EfficientDet This is an implementation of EfficientDet for object detection on Keras and Tensorflow. The project is based on the official implementati

1.3k Dec 19, 2022
OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021)

OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021) Video demo We here provide a video demo from co

20 Nov 25, 2022
Automatic Attendance marker for LMS Practice School Division, BITS Pilani

LMS Attendance Marker Automatic script for lazy people to mark attendance on LMS for Practice School 1. Setup Add your LMS credentials and time slot t

Nihar Bansal 3 Jun 12, 2021
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle

Xin Ma 156 Jan 08, 2023
You Only Look One-level Feature (YOLOF), CVPR2021, Detectron2

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides a neat implementation

qiang chen 273 Jan 03, 2023
Official Implementation for "StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery" (ICCV 2021 Oral)

StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery (ICCV 2021 Oral) Run this model on Replicate Optimization: Global directions: Mapper: Check ou

3.3k Jan 05, 2023
Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021]

Neural Material Official code repository for the paper: Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021] Henzler, Deschai

Philipp Henzler 80 Dec 20, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Jan 04, 2023
Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training".

Mixup-Data-Dependency Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training". Running Alternating Line Exp

Muthu Chidambaram 0 Nov 11, 2021
Backdoor Attack through Frequency Domain

Backdoor Attack through Frequency Domain DEPENDENCIES python==3.8.3 numpy==1.19.4 tensorflow==2.4.0 opencv==4.5.1 idx2numpy==1.2.3 pytorch==1.7.0 Data

5 Jun 18, 2022
2.86% and 15.85% on CIFAR-10 and CIFAR-100

Shake-Shake regularization This repository contains the code for the paper Shake-Shake regularization. This arxiv paper is an extension of Shake-Shake

Xavier Gastaldi 294 Nov 22, 2022
Open source repository for the code accompanying the paper 'PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations'.

PatchNets This is the official repository for the project "PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations". For details,

16 May 22, 2022