Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness?

Overview

Adversrial Machine Learning Benchmarks

This code belongs to the papers:

For this framework, please cite:

@inproceedings{
lorenz2022is,
title={Is AutoAttack/AutoBench a suitable Benchmark for Adversarial Robustness?},
author={Peter Lorenz and Dominik Strassel and Margret Keuper and Janis Keuper},
booktitle={The AAAI-22 Workshop on Adversarial Machine Learning and Beyond},
year={2022},
url={https://openreview.net/forum?id=aLB3FaqoMBs}
}

This repository is an expansion of https://github.com/paulaharder/SpectralAdversarialDefense, but has some new features:

  • Several runs can be saved for calculating the variance of the results.
  • new attack method: AutoAttack.
  • datasets: imagenet32, imagenet64, imagenet128, imagenet, celebahq32, celebahq64, and celebahq128.
  • new model: besides VGG-16 we trained a model WideResNet28-10, except for imagenet (used the standard pytorch model.)
  • bash scripts: Automatic starts various combination of input parameters
  • automatic .csv creation from all results.

Overview

overview

This image shows the pipeline from training a model, generating adversarial examples to defend them.

  1. Training: Models are trained. Pre-trained models are provided (WideResNet28-10: cif10, cif100, imagenet32, imagenet64, imagenet128, celebaHQ32, celebaHQ64, celebaHQ128; WideResNet51-2: ImageNet; VGG16: cif10 and cif100)
  2. Generate Clean Data: Only correctly classfied samples are stored via torch.save.
  3. Attacks: On this clean data severa atttacks can be executed: FGSM, BIM, AutoAttack (Std), PGD, DF and CW.
  4. Detect Feature: Detectors try to distinguish between attacked and not-attacked images.
  5. Evaluation Detect: Is the management script for handling several runs and extract the results to one .csv file.

Requirements

  • GPUs: A100 (40GB), Titan V (12GB) or GTX 1080 (12GB)
  • CUDA 11.1
  • Python 3.9.5
  • PyTorch 1.9.0
  • cuDNN 8.0.5_0

Clone the repository

$ git clone --recurse-submodules https://github.com/adverML/SpectralDef_Framework
$ cd SpectralDef_Framework

and install the requirements

$ conda create --name cuda--11-1-1--pytorch--1-9-0 -f requirements.yml
$ conda activate cuda--11-1-1--pytorch--1-9-0

There are two possiblities: Either use our data set with existing adversarial examples (not provided yet), in this case follow the instructions under 'Download' or generate the examples by yourself, by going threw 'Data generation'. For both possibilities conclude with 'Build a detector'.

Download

Download the adversarial examples (not provided yet) and their non-adversarial counterparts as well as the trained VGG-16 networks from: https://www.kaggle.com/j53t3r/weights. Extract the folders for the adversarial examples into /data and the models in the main directory. Afterwards continue with 'Build detector'.

Datasets download

These datasets are supported:

Download and copy the weights into data/datasets/. In case of troubles, adapt the paths in conf/global_settings.py.

Model download

To get the weights for all networks for CIFAR-10 and CIFAR-100, ImageNet and CelebaHQ download:

  1. Kaggle Download Weights
  2. Copy the weights into data/weights/.

In case of troubles, adapt the paths in conf/global_settings.py. You are welcome to create an issue on Github.

Data generation

Train the VGG16 on CIFAR-10:

$ python train_cif10.py

or on CIFAR-100

$ python train_cif100.py

The following skript will download the CIFAR-10/100 dataset and extract the CIFAR10/100 (imagenet32, imagenet64, imagenet128, celebAHQ32, ...) images, which are correctly classified by the network by running. Use --net cif10 for CIFAR-10 and --net cif100 for CIFAR-100

$ # python generate_clean_data.py -h  // for help
$ python generate_clean_data.py --net cif10

Then generate the adversarial examples, argument can be fgsm (Fast Gradient Sign Method), bim (Basic Iterative Method), pgd (Projected Gradient Descent), [new] std (AutoAttack Standard), df (Deepfool), cw (Carlini and Wagner), :

$ # python attack.py -h  // for help
$ python attack.py --attack fgsm

Build detector

First extract the necessary characteristics to train a detector, choose a detector out of InputMFS (BlackBox - BB), InputPFS, LayerMFS (WhiteBox - WB), LayerPFS, LID, Mahalanobis adn an attack argument as before:

$ # python extract_characteristics.py -h  // for help
$ python extract_characteristics.py --attack fgsm --detector InputMFS

Then, train a classifier on the characteristics for a specific attack and detector:

$ python detect_adversarials.py --attack fgsm --detector InputMFS

[new] Create csv file

At the end of the file evaluation_detection.py different possibilities are shown:

$ python evaluation_detection.py 

Note that: layers=False for evaluating the detectors after the the right layers are selected.

Other repositories used

You might also like...
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Code repository accompanying the paper "On Adversarial Robustness: A Neural Architecture Search perspective"

On Adversarial Robustness: A Neural Architecture Search perspective Preparation: Clone the repository: https://github.com/tdchaitanya/nas-robustness.g

Hierarchical-Bayesian-Defense - Towards Adversarial Robustness of Bayesian Neural Network through Hierarchical Variational Inference (Openreview) Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)
Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative adversarial networks (GAN)

Flickr-Faces-HQ Dataset (FFHQ) Flickr-Faces-HQ (FFHQ) is a high-quality image dataset of human faces, originally created as a benchmark for generative

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark
Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark Yong

Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.

Adversarial Training Against Location-Optimized Adversarial Patches arXiv | Paper | Code | Video | Slides Code for the paper: Sukrut Rao, David Stutz,

Adversarial Color Enhancement: Generating Unrestricted Adversarial Images by Optimizing a Color Filter

ACE Please find the preliminary version published at BMVC 2020 in the folder BMVC_version, and its extended journal version in Journal_version. Datase

transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛
transfer attack; adversarial examples; black-box attack; unrestricted Adversarial Attacks on ImageNet; CVPR2021 天池黑盒竞赛

transfer_adv CVPR-2021 AIC-VI: unrestricted Adversarial Attacks on ImageNet CVPR2021 安全AI挑战者计划第六期赛道2:ImageNet无限制对抗攻击 介绍 : 深度神经网络已经在各种视觉识别问题上取得了最先进的性能。

Adversarial-Information-Bottleneck - Distilling Robust and Non-Robust Features in Adversarial Examples by Information Bottleneck (NeurIPS21)
Releases(v1.0.7)
Code repo for "FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation" (ICCV 2021)

FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation (ICCV 2021) This repository contains the implementation of th

Yuhang Zang 21 Dec 17, 2022
Video Contrastive Learning with Global Context

Video Contrastive Learning with Global Context (VCLR) This is the official PyTorch implementation of our VCLR paper. Install dependencies environments

143 Dec 26, 2022
USAD - UnSupervised Anomaly Detection on multivariate time series

USAD - UnSupervised Anomaly Detection on multivariate time series Scripts and utility programs for implementing the USAD architecture. Implementation

116 Jan 04, 2023
“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品

“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品,并且能够返回完整地购物清单及顾客应付的实际商品总价格,极大地降低零售行业实际运营过程中巨大的人力成本,提升零售行业无人化、自动化、智能化水平。

thomas-yanxin 192 Jan 05, 2023
CLIP + VQGAN / PixelDraw

clipit Yet Another VQGAN-CLIP Codebase This started as a fork of @nerdyrodent's VQGAN-CLIP code which was based on the notebooks of @RiversWithWings a

dribnet 276 Dec 12, 2022
This repo is to present various code demos on how to use our Graph4NLP library.

Deep Learning on Graphs for Natural Language Processing Demo The repository contains code examples for DLG4NLP tutorials at NAACL 2021, SIGIR 2021, KD

Graph4AI 143 Dec 23, 2022
Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021

Spatial-Temporal Transformer for Dynamic Scene Graph Generation Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Gra

Yuren Cong 119 Jan 01, 2023
This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

Udbhav Bamba 41 Dec 14, 2022
Detector for Log4Shell exploitation attempts

log4shell-detector Detector for Log4Shell exploitation attempts Idea The problem with the log4j CVE-2021-44228 exploitation is that the string can be

Florian Roth 729 Dec 25, 2022
FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment

FaceQgen FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment This repository is based on the paper: "FaceQgen: Semi-Supervised D

Javier Hernandez-Ortega 3 Aug 04, 2022
Unsupervised Pre-training for Person Re-identification (LUPerson)

LUPerson Unsupervised Pre-training for Person Re-identification (LUPerson). The repository is for our CVPR2021 paper Unsupervised Pre-training for Per

143 Dec 24, 2022
FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning

FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning (FedML) developed and maintained by Scaleout Systems. FEDn enables highly scalable cross-silo and cr

Scaleout 75 Nov 09, 2022
Trading Strategies for Freqtrade

Freqtrade Strategies Strategies for Freqtrade, developed primarily in a partnership between @werkkrew and @JimmyNixx from the Freqtrade Discord. Use t

Bryan Chain 242 Jan 07, 2023
The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv SAINT: Improved Neural Networks for Tabular Data via Row Atte

Gowthami Somepalli 284 Dec 21, 2022
Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization

CoMatch: Semi-supervised Learning with Contrastive Graph Regularization (Salesforce Research) This is a PyTorch implementation of the CoMatch paper [B

Salesforce 107 Dec 14, 2022
This is an official implementation for "Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation".

Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation This repo is the official implementation of Exploiting Temporal Con

Vegetabird 241 Jan 07, 2023
Fermi Problems: A New Reasoning Challenge for AI

Fermi Problems: A New Reasoning Challenge for AI Fermi Problems are questions whose answer is a number that can only be reasonably estimated as a prec

AI2 15 May 28, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
The final project for "Applying AI to Wearable Device Data" course from "AI for Healthcare" - Udacity.

Motion Compensated Pulse Rate Estimation Overview This project has 2 main parts. Develop a Pulse Rate Algorithm on the given training data. Then Test

Omar Laham 2 Oct 25, 2022
Implementation of light baking system for ray tracing based on Activision's UberBake

Vulkan Light Bakary MSU Graphics Group Student's Diploma Project Treefonov Andrey [GitHub] [LinkedIn] Project Goal The goal of the project is to imple

Andrey Treefonov 7 Dec 27, 2022