Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Overview

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Yonghao Xu and Pedram Ghamisi


This research has been conducted at the Institute of Advanced Research in Artificial Intelligence (IARAI).

This is the official PyTorch implementation of the black-box adversarial attack methods for remote sensing data in our paper Universal adversarial examples in remote sensing: Methodology and benchmark.

Table of content

  1. Dataset
  2. Supported methods and models
  3. Preparation
  4. Adversarial attacks on scene classification
  5. Adversarial attacks on semantic segmentation
  6. Performance evaluation on the UAE-RS dataset
  7. Paper
  8. Acknowledgement
  9. License

Dataset

We collect the generated universal adversarial examples in the dataset named UAE-RS, which is the first dataset that provides black-box adversarial samples in the remote sensing field.

πŸ“‘ Download links:  Google Drive        Baidu NetDisk (Code: 8g1r)

To build UAE-RS, we use the Mixcut-Attack method to attack ResNet18 with 1050 test samples from the UCM dataset and 5000 test samples from the AID dataset for scene classification, and use the Mixup-Attack method to attack FCN-8s with 5 test images from the Vaihingen dataset (image IDs: 11, 15, 28, 30, 34) and 5 test images from the Zurich Summer dataset (image IDs: 16, 17, 18, 19, 20) for semantic segmentation.

Example images in the UCM dataset and the corresponding adversarial examples in the UAE-RS dataset.

Example images in the AID dataset and the corresponding adversarial examples in the UAE-RS dataset.

Qualitative results of the black-box adversarial attacks from FCN-8s β†’ SegNet on the Vaihingen dataset.

(a) The original clean test images in the Vaihingen dataset. (b) The corresponding adversarial examples in the UAE-RS dataset. (c) Segmentation results of SegNet on the clean images. (d) Segmentation results of SegNet on the adversarial images. (e) Ground-truth annotations.

Supported methods and models

This repo contains implementations of black-box adversarial attacks for remote sensing data on both scene classification and semantic segmentation tasks.

Preparation

  • Package requirements: The scripts in this repo are tested with torch==1.10 and torchvision==0.11 using two NVIDIA Tesla V100 GPUs.
  • Remote sensing datasets used in this repo:
  • Data folder structure
    • The data folder is structured as follows:
β”œβ”€β”€ <THE-ROOT-PATH-OF-DATA>/
β”‚   β”œβ”€β”€ UCMerced_LandUse/     
|   |   β”œβ”€β”€ Images/
|   |   |   β”œβ”€β”€ agricultural/
|   |   |   β”œβ”€β”€ airplane/
|   |   |   |── ...
β”‚   β”œβ”€β”€ AID/     
|   |   β”œβ”€β”€ Airport/
|   |   β”œβ”€β”€ BareLand/
|   |   |── ...
β”‚   β”œβ”€β”€ Vaihingen/     
|   |   β”œβ”€β”€ img/
|   |   β”œβ”€β”€ gt/
|   |   β”œβ”€β”€ ...
β”‚   β”œβ”€β”€ Zurich/    
|   |   β”œβ”€β”€ img/
|   |   β”œβ”€β”€ gt/
|   |   β”œβ”€β”€ ...
β”‚   β”œβ”€β”€ UAE-RS/    
|   |   β”œβ”€β”€ UCM/
|   |   β”œβ”€β”€ AID/
|   |   β”œβ”€β”€ Vaihingen/
|   |   β”œβ”€β”€ Zurich/
  • Pretraining the models for scene classification
CUDA_VISIBLE_DEVICES=0,1 python pretrain_cls.py --network 'alexnet' --dataID 1 --root_dir <THE-ROOT-PATH-OF-DATA>
CUDA_VISIBLE_DEVICES=0,1 python pretrain_cls.py --network 'resnet18' --dataID 1 --root_dir <THE-ROOT-PATH-OF-DATA>
CUDA_VISIBLE_DEVICES=0,1 python pretrain_cls.py --network 'inception' --dataID 1 --root_dir <THE-ROOT-PATH-OF-DATA>
...
  • Pretraining the models for semantic segmentation
cd ./segmentation
CUDA_VISIBLE_DEVICES=0 python pretrain_seg.py --model 'fcn8s' --dataID 1 --root_dir <THE-ROOT-PATH-OF-DATA>
CUDA_VISIBLE_DEVICES=0 python pretrain_seg.py --model 'deeplabv2' --dataID 1 --root_dir <THE-ROOT-PATH-OF-DATA>
CUDA_VISIBLE_DEVICES=0 python pretrain_seg.py --model 'segnet' --dataID 1 --root_dir <THE-ROOT-PATH-OF-DATA>
...

Please replace <THE-ROOT-PATH-OF-DATA> with the local path where you store the remote sensing datasets.

Adversarial attacks on scene classification

  • Generate adversarial examples:
CUDA_VISIBLE_DEVICES=0 python attack_cls.py --surrogate_model 'resnet18' \
                                            --attack_func 'fgsm' \
                                            --dataID 1 \
                                            --root_dir <THE-ROOT-PATH-OF-DATA>
  • Performance evaluation on the adversarial test set:
CUDA_VISIBLE_DEVICES=0 python test_cls.py --surrogate_model 'resnet18' \
                                          --target_model 'inception' \
                                          --attack_func 'fgsm' \
                                          --dataID 1 \
                                          --root_dir <THE-ROOT-PATH-OF-DATA>

You can change parameters --surrogate_model, --attack_func, and --target_model to evaluate the performance with different attacking scenarios.

Adversarial attacks on semantic segmentation

  • Generate adversarial examples:
cd ./segmentation
CUDA_VISIBLE_DEVICES=0 python attack_seg.py --surrogate_model 'fcn8s' \
                                            --attack_func 'fgsm' \
                                            --dataID 1 \
                                            --root_dir <THE-ROOT-PATH-OF-DATA>
  • Performance evaluation on the adversarial test set:
CUDA_VISIBLE_DEVICES=0 python test_seg.py --surrogate_model 'fcn8s' \
                                          --target_model 'segnet' \
                                          --attack_func 'fgsm' \
                                          --dataID 1 \
                                          --root_dir <THE-ROOT-PATH-OF-DATA>

You can change parameters --surrogate_model, --attack_func, and --target_model to evaluate the performance with different attacking scenarios.

Performance evaluation on the UAE-RS dataset

  • Scene classification:
CUDA_VISIBLE_DEVICES=0 python test_cls_uae_rs.py --target_model 'inception' \
                                                 --dataID 1 \
                                                 --root_dir <THE-ROOT-PATH-OF-DATA>

Scene classification results of different deep neural networks on the clean and UAE-RS test sets:

UCM AID
Model Clean Test Set Adversarial Test Set OA Gap Clean Test Set Adversarial Test Set OA Gap
AlexNet 90.28 30.86 -59.42 89.74 18.26 -71.48
VGG11 94.57 26.57 -68.00 91.22 12.62 -78.60
VGG16 93.04 19.52 -73.52 90.00 13.46 -76.54
VGG19 92.85 29.62 -63.23 88.30 15.44 -72.86
Inception-v3 96.28 24.86 -71.42 92.98 23.48 -69.50
ResNet18 95.90 2.95 -92.95 94.76 0.02 -94.74
ResNet50 96.76 25.52 -71.24 92.68 6.20 -86.48
ResNet101 95.80 28.10 -67.70 92.92 9.74 -83.18
ResNeXt50 97.33 26.76 -70.57 93.50 11.78 -81.72
ResNeXt101 97.33 33.52 -63.81 95.46 12.60 -82.86
DenseNet121 97.04 17.14 -79.90 95.50 10.16 -85.34
DenseNet169 97.42 25.90 -71.52 95.54 9.72 -85.82
DenseNet201 97.33 26.38 -70.95 96.30 9.60 -86.70
RegNetX-400MF 94.57 27.33 -67.24 94.38 19.18 -75.20
RegNetX-8GF 97.14 40.76 -56.38 96.22 19.24 -76.98
RegNetX-16GF 97.90 34.86 -63.04 95.84 13.34 -82.50
  • Semantic segmentation:
cd ./segmentation
CUDA_VISIBLE_DEVICES=0 python test_seg_uae_rs.py --target_model 'segnet' \
                                                 --dataID 1 \
                                                 --root_dir <THE-ROOT-PATH-OF-DATA>

Semantic segmentation results of different deep neural networks on the clean and UAE-RS test sets:

Vaihingen Zurich Summer
Model Clean Test Set Adversarial Test Set mF1 Gap Clean Test Set Adversarial Test Set mF1 Gap
FCN-32s 69.48 35.00 -34.48 66.26 32.31 -33.95
FCN-16s 69.70 27.02 -42.68 66.34 34.80 -31.54
FCN-8s 82.22 22.04 -60.18 79.90 40.52 -39.38
DeepLab-v2 77.04 34.12 -42.92 74.38 45.48 -28.90
DeepLab-v3+ 84.36 14.56 -69.80 82.51 62.55 -19.96
SegNet 78.70 17.84 -60.86 75.59 35.58 -40.01
ICNet 80.89 41.00 -39.89 78.87 59.77 -19.10
ContextNet 81.17 47.80 -33.37 77.89 63.71 -14.18
SQNet 81.85 39.08 -42.77 76.32 55.29 -21.03
PSPNet 83.11 21.43 -61.68 77.55 65.39 -12.16
U-Net 83.61 16.09 -67.52 80.78 56.58 -24.20
LinkNet 82.30 24.36 -57.94 79.98 48.67 -31.31
FRRNetA 84.17 16.75 -67.42 80.50 58.20 -22.30
FRRNetB 84.27 28.03 -56.24 79.27 67.31 -11.96

Paper

Universal adversarial examples in remote sensing: Methodology and benchmark

Please cite the following paper if you use the data or the code:

@article{uaers,
  title={Universal adversarial examples in remote sensing: Methodology and benchmark}, 
  author={Xu, Yonghao and Ghamisi, Pedram},
  journal={arXiv preprint arXiv:2202.07054},
  year={2022},
}

Acknowledgement

The authors would like to thank Prof. Shawn Newsam for making the UCM dataset public available, Prof. Gui-Song Xia for providing the AID dataset, the International Society for Photogrammetry and Remote Sensing (ISPRS), and the German Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF) for providing the Vaihingen dataset, and Dr. Michele Volpi for providing the Zurich Summer dataset.

Efficient-Segmentation-Networks

segmentation_models.pytorch

Adversarial-Attacks-PyTorch

License

This repo is distributed under MIT License. The UAE-RS dataset can be used for academic purposes only.

Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

Nils L. Westhausen 182 Jan 07, 2023
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
Source code for "Pack Together: Entity and Relation Extraction with Levitated Marker"

PL-Marker Source code for Pack Together: Entity and Relation Extraction with Levitated Marker. Quick links Overview Setup Install Dependencies Data Pr

THUNLP 173 Dec 30, 2022
We utilize deep reinforcement learning to obtain favorable trajectories for visual-inertial system calibration.

Unified Data Collection for Visual-Inertial Calibration via Deep Reinforcement Learning Update: The lastest code will be updated in this branch. Pleas

ETHZ ASL 27 Dec 29, 2022
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

60 Oct 12, 2022
"SOLQ: Segmenting Objects by Learning Queries", SOLQ is an end-to-end instance segmentation framework with Transformer.

SOLQ: Segmenting Objects by Learning Queries This repository is an official implementation of the paper SOLQ: Segmenting Objects by Learning Queries.

MEGVII Research 179 Jan 02, 2023
The Power of Scale for Parameter-Efficient Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H

Kip Parker 208 Dec 30, 2022
ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.

The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio

NAVER 23 Oct 09, 2022
AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models

AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models Description

Angel de Paula 0 Jun 08, 2022
gitγ€ŠInvestigating Loss Functions for Extreme Super-Resolution》(CVPR 2020) GitHub:

Investigating Loss Functions for Extreme Super-Resolution NTIRE 2020 Perceptual Extreme Super-Resolution Submission. Our method ranked first and secon

Sejong Yang 0 Oct 17, 2022
Convert Mission Planner (ArduCopter) Waypoint Missions to Litchi CSV Format to execute on DJI Drones

Mission Planner to Litchi Convert Mission Planner (ArduCopter) Waypoint Surveys to Litchi CSV Format to execute on DJI Drones Litchi doesn't support S

Yaros 24 Dec 09, 2022
Hide screen when boss is approaching.

BossSensor Hide your screen when your boss is approaching. Demo The boss stands up. He is approaching. When he is approaching, the program fetches fac

Hiroki Nakayama 6.2k Jan 07, 2023
Evaluating Cross-lingual Sentence Representations

XNLI: The Cross-Lingual NLI Corpus XNLI is an evaluation corpus for language transfer and cross-lingual sentence classification in 15 languages. New:

Meta Research 395 Dec 19, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
Reinforcement learning library(framework) designed for PyTorch, implements DQN, DDPG, A2C, PPO, SAC, MADDPG, A3C, APEX, IMPALA ...

Automatic, Readable, Reusable, Extendable Machin is a reinforcement library designed for pytorch. Build status Platform Status Linux Windows Supported

Iffi 348 Dec 24, 2022
Implementation for StankevičiΕ«tΔ— et al. "Conformal time-series forecasting", NeurIPS 2021.

Conformal time-series forecasting Implementation for StankevičiΕ«tΔ— et al. "Conformal time-series forecasting", NeurIPS 2021. If you use our code in yo

KamilΔ— StankevičiΕ«tΔ— 36 Nov 21, 2022
Bling's Object detection tool

BriVL for Building Applications This repo is used for illustrating how to build applications by using BriVL model. This repo is re-implemented from fo

chuhaojin 47 Nov 01, 2022
Vector.ai assignment

fabio-tests-nisargatman Low Level Approach: ###Tables: continents: id*, name, population, area, createdAt, updatedAt countries: id*, name, population,

Ravi Pullagurla 1 Nov 09, 2021