Puzzle-CAM: Improved localization via matching partial and full features.

Overview

PWC PWC

Puzzle-CAM

The official implementation of "Puzzle-CAM: Improved localization via matching partial and full features".

Citation

Please cite our paper if the code is helpful to your research. arxiv

@article{jo2021puzzle,
  title={Puzzle-CAM: Improved localization via matching partial and full features},
  author={Jo, Sanhyun and Yu, In-Jae},
  journal={arXiv preprint arXiv:2101.11253},
  year={2021}
}

Abstract

Weakly-supervised semantic segmentation (WSSS) is introduced to narrow the gap for semantic segmentation performance from pixel-level supervision to image-level supervision. Most advanced approaches are based on class activation maps (CAMs) to generate pseudo-labels to train the segmentation network. The main limitation of WSSS is that the process of generating pseudo-labels from CAMs which use an image classifier is mainly focused on the most discriminative parts of the objects. To address this issue, we propose Puzzle-CAM, a process minimizes the differences between the features from separate patches and the whole image. Our method consists of a puzzle module (PM) and two regularization terms to discover the most integrated region of in an object. Without requiring extra parameters, Puzzle-CAM can activate the overall region of an object using image-level supervision. In experiments, Puzzle-CAM outperformed previous state-of-the-art methods using the same labels for supervision on the PASCAL VOC 2012 test dataset.

Overview

Overall architecture


Prerequisite

  • Python 3.8, PyTorch 1.7.0, and more in requirements.txt
  • CUDA 10.1, cuDNN 7.6.5
  • 4 x Titan RTX GPUs

Usage

Install python dependencies

python3 -m pip install -r requirements.txt

Download PASCAL VOC 2012 devkit

Follow instructions in http://host.robots.ox.ac.uk/pascal/VOC/voc2012/#devkit

1. Train an image classifier for generating CAMs

CUDA_VISIBLE_DEVICES=0,1,2,3 python3 train_classification_with_puzzle.py --architecture resnest101 --re_loss_option masking --re_loss L1_Loss --alpha_schedule 0.50 --alpha 4.00 --tag [email protected]@optimal --data_dir $your_dir

2. Apply Random Walk (RW) to refine the generated CAMs

2.1. Make affinity labels to train AffinityNet.

CUDA_VISIBLE_DEVICES=0 python3 inference_classification.py --architecture resnest101 --tag [email protected]@optimal --domain train_aug --data_dir $your_dir
python3 make_affinity_labels.py --experiment_name [email protected]@[email protected]@scale=0.5,1.0,1.5,2.0 --domain train_aug --fg_threshold 0.40 --bg_threshold 0.10 --data_dir $your_dir

2.2. Train AffinityNet.

CUDA_VISIBLE_DEVICES=0 python3 train_affinitynet.py --architecture resnest101 --tag [email protected]@Puzzle --label_name [email protected]@opt[email protected]@scale=0.5,1.0,1.5,[email protected]_fg=0.40_bg=0.10 --data_dir $your_dir

3. Train the segmentation model using the pseudo-labels

3.1. Make segmentation labels to train segmentation model.

CUDA_VISIBLE_DEVICES=0 python3 inference_rw.py --architecture resnest101 --model_name [email protected]@Puzzle --cam_dir [email protected]@op[email protected]@scale=0.5,1.0,1.5,2.0 --domain train_aug --data_dir $your_dir
python3 make_pseudo_labels.py --experiment_name [email protected]@[email protected]@[email protected][email protected] --domain train_aug --threshold 0.35 --crf_iteration 1 --data_dir $your_dir

3.2. Train segmentation model.

CUDA_VISIBLE_DEVICES=0,1,2,3 python3 train_segmentation.py --backbone resnest101 --mode fix --use_gn True --tag [email protected]@[email protected] --label_name [email protected]@[email protected]@[email protected][email protected]@crf=1 --data_dir $your_dir

4. Evaluate the models

CUDA_VISIBLE_DEVICES=0 python3 inference_segmentation.py --backbone resnest101 --mode fix --use_gn True --tag [email protected]@[email protected] --scale 0.5,1.0,1.5,2.0 --iteration 10

python3 evaluate.py --experiment_name [email protected]@[email protected]@[email protected]=0.5,1.0,1.5,[email protected]=10 --domain val --data_dir $your_dir/SegmentationClass

5. Results

Qualitative segmentation results on the PASCAL VOC 2012 validation set. Top: original images. Middle: ground truth. Bottom: prediction of the segmentation model trained using the pseudo-labels from Puzzle-CAM. Overall architecture

Methods background aeroplane bicycle bird boat bottle bus car cat chair cow diningtable dog horse motorbike person pottedplant sheep sofa train tvmonitor mIoU
Puzzle-CAM with ResNeSt-101 88.9 87.1 38.7 89.2 55.8 72.8 89.8 78.9 91.3 26.8 84.4 40.3 88.9 81.9 83.1 34.0 60.1 83.6 47.3 59.6 38.8 67.7
Puzzle-CAM with ResNeSt-269 91.1 87.2 37.3 86.8 61.4 71.2 92.2 86.2 91.8 28.6 85.0 64.1 91.8 82.0 82.5 70.7 69.4 87.7 45.4 67.0 37.7 72.2

For any issues, please contact Sanghyun Jo, [email protected]

Comments
  • ModuleNotFoundError: No module named 'core.sync_batchnorm'

    ModuleNotFoundError: No module named 'core.sync_batchnorm'

    `

    ModuleNotFoundError Traceback (most recent call last) in 1 from core.puzzle_utils import * ----> 2 from core.networks import * 3 from core.datasets import * 4 5 from tools.general.io_utils import *

    /working/PuzzleCAM/core/networks.py in 24 # Normalization 25 ####################################################################### ---> 26 from .sync_batchnorm.batchnorm import SynchronizedBatchNorm2d 27 28 class FixedBatchNorm(nn.BatchNorm2d):

    ModuleNotFoundError: No module named 'core.sync_batchnorm' `

    opened by Ashneo07 2
  • performance issue

    performance issue

    When I used the released weights for inference phase and evaluation, I found that the mIoU I got was different from the mIoU reported in the paper. I would like to ask whether this weight is corresponding to the paper, if it is, how to reproduce the result in your paper. Looking forward to your reply.

    PuzzleCAM PuzzleCAM2

    opened by linjiatai 0
  • Evaluation in classifier training is using supervised segmentation maps?

    Evaluation in classifier training is using supervised segmentation maps?

    Hello, thank you for the great repository! It's pretty impressive how organized it is.

    I have a critic (or maybe a question, in case I got it wrong) regarding the training of the classifier, though: I understand the importance of measuring and logging the mIoU during training (specially when creating the ablation section in your paper), however it doesn't strike me as correct to save the model with best mIoU. This procedural decision is based on fully supervised segmentation information, which should not be available for a truly weakly supervised problem; while resulting in a model better suited for segmentation. The paper doesn't address this. Am I right to assume all models were trained like this? Were there any trainings where other metrics were considered when saving the model (e.g. classification loss or Eq (7) in the paper)?

    opened by lucasdavid 0
  • error occured when image-size isn't 512 * n

    error occured when image-size isn't 512 * n

    dear author: I notice that if the image size isn't 512 x 512, it will have some error. I use image size 1280 x 496 and i got tensor size error at calculate puzzle module:the original feature is 31 dims and re_feature is 32 dims. So i have to change image size to 1280 x 512 and i work. So i think this maybe a little bug. It will better that you fixed it or add a notes in code~ Thanks for your job!

    opened by hazy-wu 0
  • the backbone of Affinitynet is resnet38. Why did you write resnet50?

    the backbone of Affinitynet is resnet38. Why did you write resnet50?

    In Table 2 of your paper, the backbone of Affinitynet is resnet38. Why did you write resnet50? After my experiment, I found that RW result reached 65.42% for Affinitynet which is based on resnet50 and higher than yours.

    opened by songyukino1 0
  • Ask for details of the training process!

    Ask for details of the training process!

    I am trying to train with ResNest101, and I also added affinity and RW. When I try to train, it runs according to the specified code. It is found that the obtained affinity labels are not effective, and the effect of pseudo_labels is almost invisible, which is close to the effect of all black. I don't know where the problem is, who can explain the details. help!

    opened by YuYue26 1
Releases(v1.0)
Owner
Sanghyun Jo
e-mail : [email protected] # DeepLearning #Computer Vision #AutoML #Se
Sanghyun Jo
DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time

DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time Introduction This is official implementation for DR-GAN (IEEE TCS

Kang Liao 18 Dec 23, 2022
On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation

On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation On Nonlinear Latent Transformations for GAN-based Image Editi

Valentin Khrulkov 22 Oct 24, 2022
This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

GAN Memory for Lifelong learning This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting. Please consider citing our paper

Miaoyun Zhao 43 Dec 27, 2022
CBKH: The Cornell Biomedical Knowledge Hub

Cornell Biomedical Knowledge Hub (CBKH) CBKG integrates data from 18 publicly available biomedical databases. The current version of CBKG contains a t

44 Dec 21, 2022
A3C LSTM Atari with Pytorch plus A3G design

NEWLY ADDED A3G A NEW GPU/CPU ARCHITECTURE OF A3C FOR SUBSTANTIALLY ACCELERATED TRAINING!! RL A3C Pytorch NEWLY ADDED A3G!! New implementation of A3C

David Griffis 532 Jan 02, 2023
利用yolov5和TensorRT从0到1实现目标检测的模型训练到模型部署全过程

写在前面 利用TensorRT加速推理速度是以时间换取精度的做法,意味着在推理速度上升的同时将会有精度的下降,不过不用太担心,精度下降微乎其微。此外,要有NVIDIA显卡,经测试,CUDA10.2可以支持20系列显卡及以下,30系列显卡需要CUDA11.x的支持,并且目前有bug。 默认你已经完成了

Helium 6 Jul 28, 2022
Alpha-Zero - Telegram Group Manager Bot Written In Python Using Pyrogram

✨ Alpha Zero Bot ✨ Telegram Group Manager Bot + Userbot Written In Python Using

1 Feb 17, 2022
NeuralDiff: Segmenting 3D objects that move in egocentric videos

NeuralDiff: Segmenting 3D objects that move in egocentric videos Project Page | Paper + Supplementary | Video About This repository contains the offic

Vadim Tschernezki 14 Dec 05, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
The sixth place winning solution (6/220) in 2021 Gaofen Challenge.

SwinTransformer + OBBDet The sixth place winning solution (6/220) in the track of Fine-grained Object Recognition in High-Resolution Optical Images, 2

ming71 46 Dec 02, 2022
Secure Distributed Training at Scale

Secure Distributed Training at Scale This repository contains the implementation of experiments from the paper "Secure Distributed Training at Scale"

Yandex Research 9 Jul 11, 2022
Keeper for Ricochet Protocol, implemented with Apache Airflow

Ricochet Keeper This repository contains Apache Airflow DAGs for executing keeper operations for Ricochet Exchange. Usage You will need to run this us

Ricochet Exchange 5 May 24, 2022
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
Dilated RNNs in pytorch

PyTorch Dilated Recurrent Neural Networks PyTorch implementation of Dilated Recurrent Neural Networks (DilatedRNN). Getting Started Installation: $ pi

Zalando Research 200 Nov 17, 2022
[ACMMM 2021 Oral] Enhanced Invertible Encoding for Learned Image Compression

InvCompress Official Pytorch Implementation for "Enhanced Invertible Encoding for Learned Image Compression", ACMMM 2021 (Oral) Figure: Our framework

96 Nov 30, 2022
Voice Gender Recognition

In this project it was used some different Machine Learning models to identify the gender of a voice (Female or Male) based on some specific speech and voice attributes.

Anne Livia 1 Jan 27, 2022
mPose3D, a mmWave-based 3D human pose estimation model.

mPose3D, a mmWave-based 3D human pose estimation model.

KylinChen 35 Nov 08, 2022
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
A script that trains a model to recognize handwritten digits using the MNIST data set.

handwritten-digits-recognition A script that trains a model to recognize handwritten digits using the MNIST data set. Then it loads external files and

Hamza Sayih 1 Oct 30, 2021
A universal framework for learning timestamp-level representations of time series

TS2Vec This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical C

Zhihan Yue 284 Dec 30, 2022