This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

Overview

GAN Memory for Lifelong learning

This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

Please consider citing our paper if you refer to this code in your research.

@article{cong2020gan,
  title={GAN Memory with No Forgetting},
  author={Cong, Yulai and Zhao, Miaoyun and Li, Jianqiao and Wang, Sijia and Carin, Lawrence},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}

Requirement

python=3.7.3
pytorch=1.2.0

Notes

The source model is based on the GP-GAN.

GANMemory_Flowers.py is the implementation of the model in Figure1(a).

classConditionGANMemory.py is the class-conditional generalization of GAN memory, which is used as pseudo rehearsal for a lifelong classification as shown in Section 5.2.

Lifelong_classification.py is the code for the lifelong classification part as shown in Section 5.2.

Usage

First, download the pretrained GP-GAN model by running download_pretrainedGAN.py. Note please change the path therein.

Second, download the training data to the folder ./data/. For example, download the Flowers dataset from: https://www.robots.ox.ac.uk/~vgg/data/flowers/102/ to the folder ./data/102flowers/.

Dataset preparation

data
├──102flowers
           ├──all8189images
├── CelebA
...

Finally, run GANMemory_Flowers.py.

The FID scores of our method shown in Figure 1(b) are summerized in the following table.

Dataset 5K 10K 15K 20K 25K 30K 35K 40K 45K 50K 55K 60K
Flowers 29.26 23.25 19.73 17.98 17.04 16.10 15.93 15.38 15.33 14.96 15.19 14.75
Cathedrals 19.78 18.32 17.10 16.47 16.15 16.33 16.08 15.94 15.78 15.60 15.64 15.67
Cats 38.56 25.74 23.14 21.15 20.80 20.89 19.73 19.88 18.69 18.57 17.57 18.18

For lifelong classification

  1. run classConditionGANMemory.py for each task until the whole sequeence of tasks are remembered and save the generators;

  2. run Lifelong_classification.py to get the classification results.

  3. run Compression_low_rank_six_butterfly.py to get the compression results.

Note, for the sake of simplicity, we devide the pseudo rehearsal based lifelong classification processes into above two stages, one can of course find a way to merge these two stages to form a learning process along task sequence.

Acknowledgement

Our code is based on GAN_stability: https://github.com/LMescheder/GAN_stability from the paper Which Training Methods for GANs do actually Converge?.

Owner
Miaoyun Zhao
Miaoyun Zhao
In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results from as little as 16 seconds of target data.

Neural Instrument Cloning In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results fro

Erland 127 Dec 23, 2022
NeuralTalk is a Python+numpy project for learning Multimodal Recurrent Neural Networks that describe images with sentences.

#NeuralTalk Warning: Deprecated. Hi there, this code is now quite old and inefficient, and now deprecated. I am leaving it on Github for educational p

Andrej 5.3k Jan 07, 2023
Unified API to facilitate usage of pre-trained "perceptor" models, a la CLIP

mmc installation git clone https://github.com/dmarx/Multi-Modal-Comparators cd 'Multi-Modal-Comparators' pip install poetry poetry build pip install d

David Marx 37 Nov 25, 2022
A python-image-classification web application project, written in Python and served through the Flask Microframework

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and

Gerald Maduabuchi 19 Dec 12, 2022
Create images and texts with the First Order Generative Adversarial Networks

First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority

Zalando Research 35 Dec 11, 2021
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Daft-Exprt - PyTorch Implementation PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis The

Keon Lee 47 Dec 18, 2022
Flask101 - FullStack Web Development with Python & JS - From TAQWA

Task: Create a CLI Calculator Step 0: Creating Virtual Environment $ python -m

Hossain Foysal 1 May 31, 2022
The official codes of "Semi-supervised Models are Strong Unsupervised Domain Adaptation Learners".

SSL models are Strong UDA learners Introduction This is the official code of paper "Semi-supervised Models are Strong Unsupervised Domain Adaptation L

Yabin Zhang 26 Dec 26, 2022
网络协议2天集训

网络协议2天集训 抓包工具安装 Wireshark wireshark下载地址 Tcpdump CentOS yum install tcpdump -y Ubuntu apt-get install tcpdump -y k8s抓包测试环境 查看虚拟网卡veth pair 查看

120 Dec 12, 2022
An implementation of the efficient attention module.

Efficient Attention An implementation of the efficient attention module. Description Efficient attention is an attention mechanism that substantially

Shen Zhuoran 194 Dec 15, 2022
The implemention of Video Depth Estimation by Fusing Flow-to-Depth Proposals

Flow-to-depth (FDNet) video-depth-estimation This is the implementation of paper Video Depth Estimation by Fusing Flow-to-Depth Proposals Jiaxin Xie,

32 Jun 14, 2022
The implementation of FOLD-R++ algorithm

FOLD-R-PP The implementation of FOLD-R++ algorithm. The target of FOLD-R++ algorithm is to learn an answer set program for a classification task. Inst

13 Dec 23, 2022
A fast model to compute optical flow between two input images.

DCVNet: Dilated Cost Volumes for Fast Optical Flow This repository contains our implementation of the paper: @InProceedings{jiang2021dcvnet, title={

Huaizu Jiang 8 Sep 27, 2021
The official project of SimSwap (ACM MM 2020)

SimSwap: An Efficient Framework For High Fidelity Face Swapping Proceedings of the 28th ACM International Conference on Multimedia The official reposi

Six_God 2.6k Jan 08, 2023
Research on Tabular Deep Learning (Python package & papers)

Research on Tabular Deep Learning For paper implementations, see the section "Papers and projects". rtdl is a PyTorch-based package providing a user-f

Yura Gorishniy 510 Dec 30, 2022
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 111 Dec 18, 2022
Official implementation for (Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation, CVPR-2021)

FRSKD Official implementation for Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation (CVPR-2021) Requirements Pytho

75 Dec 28, 2022
Joint-task Self-supervised Learning for Temporal Correspondence (NeurIPS 2019)

Joint-task Self-supervised Learning for Temporal Correspondence Project | Paper Overview Joint-task Self-supervised Learning for Temporal Corresponden

Sifei Liu 167 Dec 14, 2022
Predicting Price of house by considering ,house age, Distance from public transport

House-Price-Prediction Predicting Price of house by considering ,house age, Distance from public transport, No of convenient stores around house etc..

Musab Jaleel 1 Jan 08, 2022
Machine-in-the-Loop Rewriting for Creative Image Captioning

Machine-in-the-Loop Rewriting for Creative Image Captioning Data Annotated sources of data used in the paper: Data Source URL Mohammed et al. Link Gor

Vishakh P 6 Jul 24, 2022