This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

Overview

GAN Memory for Lifelong learning

This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

Please consider citing our paper if you refer to this code in your research.

@article{cong2020gan,
  title={GAN Memory with No Forgetting},
  author={Cong, Yulai and Zhao, Miaoyun and Li, Jianqiao and Wang, Sijia and Carin, Lawrence},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}

Requirement

python=3.7.3
pytorch=1.2.0

Notes

The source model is based on the GP-GAN.

GANMemory_Flowers.py is the implementation of the model in Figure1(a).

classConditionGANMemory.py is the class-conditional generalization of GAN memory, which is used as pseudo rehearsal for a lifelong classification as shown in Section 5.2.

Lifelong_classification.py is the code for the lifelong classification part as shown in Section 5.2.

Usage

First, download the pretrained GP-GAN model by running download_pretrainedGAN.py. Note please change the path therein.

Second, download the training data to the folder ./data/. For example, download the Flowers dataset from: https://www.robots.ox.ac.uk/~vgg/data/flowers/102/ to the folder ./data/102flowers/.

Dataset preparation

data
├──102flowers
           ├──all8189images
├── CelebA
...

Finally, run GANMemory_Flowers.py.

The FID scores of our method shown in Figure 1(b) are summerized in the following table.

Dataset 5K 10K 15K 20K 25K 30K 35K 40K 45K 50K 55K 60K
Flowers 29.26 23.25 19.73 17.98 17.04 16.10 15.93 15.38 15.33 14.96 15.19 14.75
Cathedrals 19.78 18.32 17.10 16.47 16.15 16.33 16.08 15.94 15.78 15.60 15.64 15.67
Cats 38.56 25.74 23.14 21.15 20.80 20.89 19.73 19.88 18.69 18.57 17.57 18.18

For lifelong classification

  1. run classConditionGANMemory.py for each task until the whole sequeence of tasks are remembered and save the generators;

  2. run Lifelong_classification.py to get the classification results.

  3. run Compression_low_rank_six_butterfly.py to get the compression results.

Note, for the sake of simplicity, we devide the pseudo rehearsal based lifelong classification processes into above two stages, one can of course find a way to merge these two stages to form a learning process along task sequence.

Acknowledgement

Our code is based on GAN_stability: https://github.com/LMescheder/GAN_stability from the paper Which Training Methods for GANs do actually Converge?.

Owner
Miaoyun Zhao
Miaoyun Zhao
BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalanced Tongue Data

Balanced-Evolutionary-Semi-Stacking Code for the paper ''BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalan

0 Jan 16, 2022
🗣️ Microsoft Edge TTS for Home Assistant, no need for app_key

Microsoft Edge TTS for Home Assistant This component is based on the TTS service of Microsoft Edge browser, no need to apply for app_key. Install Down

152 Dec 31, 2022
This repository provides the code for MedViLL(Medical Vision Language Learner).

MedViLL This repository provides the code for MedViLL(Medical Vision Language Learner). Our proposed architecture MedViLL is a single BERT-based model

SuperSuperMoon 39 Jan 05, 2023
Tf alloc - Simplication of GPU allocation for Tensorflow2

tf_alloc Simpliying GPU allocation for Tensorflow Developer: korkite (Junseo Ko)

Junseo Ko 3 Feb 10, 2022
Source Code For Template-Based Named Entity Recognition Using BART

Template-Based NER Source Code For Template-Based Named Entity Recognition Using BART Training Training train.py Inference inference.py Corpus ATIS (h

174 Dec 19, 2022
PyTorch implementation of ENet

PyTorch-ENet PyTorch (v1.1.0) implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from the lua-torc

David Silva 333 Dec 29, 2022
An implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019).

MixHop and N-GCN ⠀ A PyTorch implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019)

Benedek Rozemberczki 393 Dec 13, 2022
First-Order Probabilistic Programming Language

FOPPL: A First-Order Probabilistic Programming Language This is an implementation of FOPPL, an S-expression based probabilistic programming language d

Renato Costa 23 Dec 20, 2022
Neural network-based build time estimation for additive manufacturing

Neural network-based build time estimation for additive manufacturing Oh, Y., Sharp, M., Sprock, T., & Kwon, S. (2021). Neural network-based build tim

Yosep 1 Nov 15, 2021
GAN encoders in PyTorch that could match PGGAN, StyleGAN v1/v2, and BigGAN. Code also integrates the implementation of these GANs.

MTV-TSA: Adaptable GAN Encoders for Image Reconstruction via Multi-type Latent Vectors with Two-scale Attentions. This is the official code release fo

owl 37 Dec 24, 2022
The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')

The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography

James 135 Dec 23, 2022
SynNet - synthetic tree generation using neural networks

SynNet This repo contains the code and analysis scripts for our amortized approach to synthetic tree generation using neural networks. Our model can s

Wenhao Gao 60 Dec 29, 2022
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Text-AutoAugment (TAA) This repository contains the code for our paper Text AutoAugment: Learning Compositional Augmentation Policy for Text Classific

LancoPKU 105 Jan 03, 2023
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775

CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi

Multimodal Lab @ Samsung AI Center Moscow 201 Dec 21, 2022
Official PyTorch implementation of the paper "Graph-based Generative Face Anonymisation with Pose Preservation" in ICIAP 2021

Contents AnonyGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowledgments Citat

Nicola Dall'Asen 10 May 24, 2022
Artificial Intelligence playing minesweeper 🤖

AI playing Minesweeper ✨ Minesweeper is a single-player puzzle video game. The objective of the game is to clear a rectangular board containing hidden

Vaibhaw 8 Oct 17, 2022
This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your username and app/website.

PasswordGeneratorAndVault This program generates a random 12 digit/character password (upper and lowercase) and stores it in a file along with your us

Chris 1 Feb 26, 2022
Transfer style api - An API to use with Tranfer Style App, where you can use two image and transfer the style

Transfer Style API It's an API to use with Tranfer Style App, where you can use

Brian Alejandro 1 Feb 13, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
StarGAN-ZSVC: Unofficial PyTorch Implementation

This repository is an unofficial PyTorch implementation of StarGAN-ZSVC by Matthew Baas and Herman Kamper. This repository provides both model architectures and the code to inference or train them.

Jirayu Burapacheep 11 Aug 28, 2022