(NeurIPS 2021) Realistic Evaluation of Transductive Few-Shot Learning

Overview

Realistic evaluation of transductive few-shot learning

Introduction

This repo contains the code for our NeurIPS 2021 submitted paper "Realistic evaluation of transductive few-shot learning". This is a framework that regroups all methods evaluated in our paper except for SIB and LR-ICI. Results provided in the paper can be reproduced with this repo. Code was developed under python 3.8.3 and pytorch 1.4.0.

1. Getting started

1.1 Quick installation (recommended) (Download datasets and models)

To download datasets and pre-trained models (checkpoints), follow instructions 1.1.1 to 1.1.2 of NeurIPS 2020 paper "TIM: Transductive Information Maximization" public implementation (https://github.com/mboudiaf/TIM)

1.1.1 Place datasets

Make sure to place the downloaded datasets (data/ folder) at the root of the directory.

1.1.2 Place models

Make sure to place the downloaded pre-trained models (checkpoints/ folder) at the root of the directory.

1.2 Manual installation

Follow instruction 1.2 of NeurIPS 2020 paper "TIM: Transductive Information Maximization" public implementation (https://github.com/mboudiaf/TIM) if facing issues with previous steps. Make sure to place data/ and checkpoints/ folders at the root of the directory.

2. Requirements

To install requirements:

conda create --name <env> --file requirements.txt

Where <env> is the name of your environment

3. Reproducing the main results

Before anything, activate the environment:

source activate <env>

3.1 Table 1 and 2 results in paper

Evaluation in a 5-shot scenario on mini-Imagenet using RN-18 as backbone (Table 1. in paper)

Method 1-shot 5-shot 10-shot 20-shot
SimpleShot 63.0 80.1 84.0 86.1
PT-MAP 60.1 (↓16.8) 67.1 (↓18.2) 68.8 (↓18.0) 70.4 (↓17.4)
LaplacianShot 65.4 (↓4.7) 81.6 (↓0.5) 84.1 (↓0.2) 86.0 (↑0.5)
BDCSPN 67.0 (↓2.4) 80.2 (↓1.8) 82.7 (↓1.4) 84.6 (↓1.1)
TIM 67.3 (↓4.5) 79.8 (↓4.1) 82.3 (↓3.8) 84.2 (↓3.7)
α-TIM 67.4 82.5 85.9 87.9

To reproduce the results from Table 1. and 2. in the paper, from the root of the directory execute this python command.

python3 -m src.main --base_config <path_to_base_config_file> --method_config <path_to_method_config_file> 

The <path_to_base_config_file> follows this hierarchy:

config/<balanced or dirichlet>/base_config/<resnet18 or wideres>/<mini or tiered or cub>/base_config.yaml

The <path_to_method_config_file> follows this hierarchy:

config/<balanced or dirichlet>/methods_config/<alpha_tim or baseline or baseline_pp or bdcspn or entropy_min or laplacianshot or protonet or pt_map or simpleshot or tim>.yaml

For instance, if you want to reproduce the results in the balanced setting on mini-Imagenet, using ResNet-18, with alpha-TIM method go to the root of the directory and execute:

python3 -m src.main --base_config config/balanced/base_config/resnet18/mini/base_config.yaml --method_config config/balanced/methods_config/alpha_tim.yaml

If you want to reproduce the results in the randomly balanced setting on mini-Imagenet, using ResNet-18, with alpha-TIM method go to the root of the directory and execute:

python3 -m src.main --base_config config/dirichlet/base_config/resnet18/mini/base_config.yaml --method_config config/dirichlet/methods_config/alpha_tim.yaml

Reusable data sampler module

One of our main contribution is our realistic task sampling method following Dirichlet's distribution. plot

Our realistic sampler can be found in sampler.py file. The sampler has been implemented following Pytorch's norms and in a way that it can be easily reused and integrated in other projects.

The following notebook exemple_realistic_sampler.ipynb is an exemple that shows how to initialize and use our realistic category sampler.

Contact

For further questions or details, reach out to Olivier Veilleux ([email protected])

Acknowledgements

Special thanks to the authors of NeurIPS 2020 paper "TIM: Transductive Information Maximization" (TIM) (https://github.com/mboudiaf/TIM) for publicly sharing their pre-trained models and their source code from which this repo was inspired from.

Owner
Olivier Veilleux
Olivier Veilleux
Official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).

Knowledge Bridging for Empathetic Dialogue Generation This is the official implementation for paper Knowledge Bridging for Empathetic Dialogue Generat

Qintong Li 50 Dec 20, 2022
CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework

CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework This repository contains a framework for Recommender Systems (RecSys), a

RecSys Lab 8 Jul 03, 2022
UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring

UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring Code Summary aggregate.py: this script aggr

1 Dec 28, 2021
Data visualization app for H&M competition in kaggle

handm_data_visualize_app Data visualization app by streamlit for H&M competition in kaggle. competition page: https://www.kaggle.com/competitions/h-an

Kyohei Uto 12 Apr 30, 2022
Provably Rare Gem Miner.

Provably Rare Gem Miner just another random project by yoyoismee.eth useful link main site market contract useful thing you should know read contract

34 Nov 22, 2022
Speedy Implementation of Instance-based Learning (IBL) agents in Python

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1 Instal

0 Nov 18, 2021
The code written during my Bachelor Thesis "Classification of Human Whole-Body Motion using Hidden Markov Models".

This code was written during the course of my Bachelor thesis Classification of Human Whole-Body Motion using Hidden Markov Models. Some things might

Matthias Plappert 14 Dec 06, 2022
Code for the paper "Relation of the Relations: A New Formalization of the Relation Extraction Problem"

This repo contains the code for the EMNLP 2020 paper "Relation of the Relations: A New Paradigm of the Relation Extraction Problem" (Jin et al., 2020)

YYY 27 Oct 26, 2022
Code for ACL2021 long paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases

LANKA This is the source code for paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases (ACL 2021, long paper) Referen

Boxi Cao 30 Oct 24, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
Efficiently Disentangle Causal Representations

Efficiently Disentangle Causal Representations Install dependency pip install -r requirements.txt Main experiments Causality direction prediction cd

4 Apr 01, 2022
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

凌逆战 16 Dec 30, 2022
DeepRec is a recommendation engine based on TensorFlow.

DeepRec Introduction DeepRec is a recommendation engine based on TensorFlow 1.15, Intel-TensorFlow and NVIDIA-TensorFlow. Background Sparse model is a

Alibaba 676 Jan 03, 2023
Codes for building and training the neural network model described in Domain-informed neural networks for interaction localization within astroparticle experiments.

Domain-informed Neural Networks Codes for building and training the neural network model described in Domain-informed neural networks for interaction

DIDACTS 0 Dec 13, 2021
Residual Pathway Priors for Soft Equivariance Constraints

Residual Pathway Priors for Soft Equivariance Constraints This repo contains the implementation and the experiments for the paper Residual Pathway Pri

Marc Finzi 13 Oct 12, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
This is the official pytorch implementation of the BoxEL for the description logic EL++

BoxEL: Box EL++ Embedding This is the official pytorch implementation of the BoxEL for the description logic EL++. BoxEL++ is a geometric approach bas

1 Nov 03, 2022
Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet)

Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet) By Lele Chen , Ross K Maddox, Zhiyao Duan, Chenliang Xu. Unive

Lele Chen 218 Dec 27, 2022
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation

DFFNet Paper DFFNet: An IoT-perceptive Dual Feature Fusion Network for General Real-time Semantic Segmentation. Xiangyan Tang, Wenxuan Tu, Keqiu Li, J

4 Sep 23, 2022