Implementation of the GBST block from the Charformer paper, in Pytorch

Overview

Charformer - Pytorch

Implementation of the GBST (gradient-based subword tokenization) module from the Charformer paper, in Pytorch. The paper proposes a module that automatically learns subword representations, obviating the need for tokenizers in the encoder setting.

AI Coffee Break with Letitia video

Install

$ pip install charformer-pytorch

Usage

import torch
from charformer_pytorch import GBST

tokenizer = GBST(
    num_tokens = 257,             # number of tokens, should be 256 for byte encoding (+ 1 special token for padding in this example)
    dim = 512,                    # dimension of token and intra-block positional embedding
    max_block_size = 4,           # maximum block size
    downsample_factor = 4,        # the final downsample factor by which the sequence length will decrease by
    score_consensus_attn = True   # whether to do the cheap score consensus (aka attention) as in eq. 5 in the paper
)

tokens = torch.randint(0, 257, (1, 1023)) # uneven number of tokens (1023)
mask   = torch.ones(1, 1023).bool()

# both tokens and mask will be appropriately downsampled

tokens, mask = tokenizer(tokens, mask = mask) # (1, 256, 512), (1, 256)

# now pass this on to your transformer

Citations

@misc{tay2021charformer,
    title   = {Charformer: Fast Character Transformers via Gradient-based Subword Tokenization}, 
    author  = {Yi Tay and Vinh Q. Tran and Sebastian Ruder and Jai Gupta and Hyung Won Chung and Dara Bahri and Zhen Qin and Simon Baumgartner and Cong Yu and Donald Metzler},
    year    = {2021},
    eprint  = {2106.12672},
    archivePrefix = {arXiv},
    primaryClass = {cs.CL}
}
Comments
  • positional embedding

    positional embedding

    Screenshot from 2021-06-30 12-12-17

    in section 2.1.1 in the paper, the authors claim that by adding intra-block positional embeddings https://github.com/lucidrains/charformer-pytorch/blob/main/charformer_pytorch/charformer_pytorch.py#L90-L96 the block representations will be aware of the position of each character. however, if one were to be doing mean pooling as the author propose, wouldn't this amount to just adding the mean of the positional embeddings for every block? If anyone has any insights, please leave a comment

    help wanted 
    opened by lucidrains 3
  • Cannot tokenize on GPU

    Cannot tokenize on GPU

    Hi,

    I'm using Charformer to do some error corrections on Colab. But I found that after I pass tokens to CUDA and start tokenizing, this would show up: image

    Did I do it in a wrong way?

    opened by Shamepoo 2
  • example of how to read in/tokenize a text file, for use with HuggingFace Transformers?

    example of how to read in/tokenize a text file, for use with HuggingFace Transformers?

    Hello, I was attempting to adapt this guide for use with Charformer Pytorch. Colab notebook for that guide is here.

    I'd like to be able to use GBST on the same data, https://cdn-datasets.huggingface.co/EsperBERTo/data/oscar.eo.txt, but I'm not sure how to pass that in.

    I tried looking at the source code, and the other issues here, but haven't yet found the details.

    Some specific questions:

    • how do I "train" this tokenizer on a .txt file?
    • is it compatible with this section of the HF notebook, aka can it be passed into LineByLineTextDataset?
    from transformers import LineByLineTextDataset
    
    dataset = LineByLineTextDataset(
        tokenizer=tokenizer,
        file_path="./oscar.eo.txt",
        block_size=128,
    )
    

    When I tried doing that line, I got the following error:

    /usr/local/lib/python3.7/dist-packages/transformers/data/datasets/language_modeling.py:124: FutureWarning: This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets library. You can have a look at this example script for pointers: https://github.com/huggingface/transformers/blob/master/examples/pytorch/language-modeling/run_mlm.py
      FutureWarning,
    
    ---------------------------------------------------------------------------
    
    TypeError                                 Traceback (most recent call last)
    
    <ipython-input-38-1688c68b48be> in <module>()
          5     tokenizer=tokenizer,
          6     file_path="./oscar.eo.txt",
    ----> 7     block_size=128,
          8 )
    
    1 frames
    
    /usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
       1049         if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
       1050                 or _global_forward_hooks or _global_forward_pre_hooks):
    -> 1051             return forward_call(*input, **kwargs)
       1052         # Do not call functions when jit is used
       1053         full_backward_hooks, non_full_backward_hooks = [], []
    
    TypeError: forward() got an unexpected keyword argument 'add_special_tokens'
    
    opened by cdleong 0
  • Sequence Length Problem in NMT

    Sequence Length Problem in NMT

    After downsampling, the length of the sequence has been shortened. But how can I return the sequence to its original length since I may need to do sentence generation in error correction?

    Thank you!

    opened by Shamepoo 1
  • Bytes vs. Characters

    Bytes vs. Characters

    The authors address the difference between bytes and characters in footnote 2, it seems like the byte is just the char embedding with dimension of 256. However, in the last sentence, For other languages, each character corresponds to 2–3 bytes in general. For simplicity and to align with prior work, we will generally talk about characters unless stated otherwise. and the example 子词分词, it becomes 子子子词词词分分分词词词, with the 3 bytes in every character.

    What I want to know is, 3 bytes mean we replicate three times for every single character, then feed into embedding? If so, how to decide the number of bytes.

    Thank you.

    opened by jamfly 0
Releases(0.0.4)
Owner
Phil Wang
Working with Attention
Phil Wang
Optimizing Deeper Transformers on Small Datasets

DT-Fixup Optimizing Deeper Transformers on Small Datasets Paper published in ACL 2021: arXiv Detailed instructions to replicate our results in the pap

16 Nov 14, 2022
Deep learning models for change detection of remote sensing images

Change Detection Models (Remote Sensing) Python library with Neural Networks for Change Detection based on PyTorch. ⚡ ⚡ ⚡ I am trying to build this pr

Kaiyu Li 176 Dec 24, 2022
Evaluating different engineering tricks that make RL work

Reinforcement Learning Tricks, Index This repository contains the code for the paper "Distilling Reinforcement Learning Tricks for Video Games". Short

Anssi 15 Dec 26, 2022
Pytorch implementation of "Get To The Point: Summarization with Pointer-Generator Networks"

About this repository This repo contains an Pytorch implementation for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Netwo

wxDai 7 Oct 14, 2022
A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

Jayson Reis 94 Nov 21, 2022
Deep Learning for Computer Vision final project

Deep Learning for Computer Vision final project

grassking100 1 Nov 30, 2021
Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR

UniSpeech The family of UniSpeech: UniSpeech (ICML 2021): Unified Pre-training for Self-Supervised Learning and Supervised Learning for ASR UniSpeech-

Microsoft 282 Jan 09, 2023
Asymmetric Bilateral Motion Estimation for Video Frame Interpolation, ICCV2021

ABME (ICCV2021) Junheum Park, Chul Lee, and Chang-Su Kim Official PyTorch Code for "Asymmetric Bilateral Motion Estimation for Video Frame Interpolati

Junheum Park 86 Dec 28, 2022
An educational tool to introduce AI planning concepts using mobile manipulator robots.

JEDAI Explains Decision-Making AI Virtual Machine Image The recommended way of using JEDAI is to use pre-configured Virtual Machine image that is avai

Autonomous Agents and Intelligent Robots 13 Nov 15, 2022
Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences"

Syntax-Customized-Video-Captioning Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences". This is my second w

3 Dec 05, 2022
Human Pose estimation with TensorFlow framework

Human Pose Estimation with TensorFlow Here you can find the implementation of the Human Body Pose Estimation algorithm, presented in the DeeperCut and

Eldar Insafutdinov 1.1k Dec 29, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing

CapsuleVOS This is the code for the ICCV 2019 paper CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing. Arxiv Link: https://a

53 Oct 27, 2022
Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

2 Nov 15, 2021
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids

RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids Real-time detection performance. This repo contains the code an

0 Nov 10, 2021
The repo of the preprinting paper "Labels Are Not Perfect: Inferring Spatial Uncertainty in Object Detection"

Inferring Spatial Uncertainty in Object Detection A teaser version of the code for the paper Labels Are Not Perfect: Inferring Spatial Uncertainty in

ZINING WANG 21 Mar 03, 2022
PyTorch implementation of saliency map-aided GAN for Auto-demosaic+denosing

Saiency Map-aided GAN for RAW2RGB Mapping The PyTorch implementations and guideline for Saiency Map-aided GAN for RAW2RGB Mapping. 1 Implementations B

Yuzhi ZHAO 20 Oct 24, 2022
unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier"

SquarePlus (Pytorch implement) unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier" SquarePlus Squareplus is a Softplus-L

SeeFun 3 Dec 29, 2021
abess: Fast Best-Subset Selection in Python and R

abess: Fast Best-Subset Selection in Python and R Overview abess (Adaptive BEst Subset Selection) library aims to solve general best subset selection,

297 Dec 21, 2022