Pytorch reimplementation of the Vision Transformer (An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale)

Overview

Vision Transformer

Pytorch reimplementation of Google's repository for the ViT model that was released with the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.

This paper show that Transformers applied directly to image patches and pre-trained on large datasets work really well on image recognition task.

fig1

Vision Transformer achieve State-of-the-Art in image recognition task with standard Transformer encoder and fixed-size patches. In order to perform classification, author use the standard approach of adding an extra learnable "classification token" to the sequence.

fig2

Usage

1. Download Pre-trained model (Google's Official Checkpoint)

  • Available models: ViT-B_16(85.8M), R50+ViT-B_16(97.96M), ViT-B_32(87.5M), ViT-L_16(303.4M), ViT-L_32(305.5M), ViT-H_14(630.8M)
    • imagenet21k pre-train models
      • ViT-B_16, ViT-B_32, ViT-L_16, ViT-L_32, ViT-H_14
    • imagenet21k pre-train + imagenet2012 fine-tuned models
      • ViT-B_16-224, ViT-B_16, ViT-B_32, ViT-L_16-224, ViT-L_16, ViT-L_32
    • Hybrid Model(Resnet50 + Transformer)
      • R50-ViT-B_16
# imagenet21k pre-train
wget https://storage.googleapis.com/vit_models/imagenet21k/{MODEL_NAME}.npz

# imagenet21k pre-train + imagenet2012 fine-tuning
wget https://storage.googleapis.com/vit_models/imagenet21k+imagenet2012/{MODEL_NAME}.npz

2. Train Model

python3 train.py --name cifar10-100_500 --dataset cifar10 --model_type ViT-B_16 --pretrained_dir checkpoint/ViT-B_16.npz

CIFAR-10 and CIFAR-100 are automatically download and train. In order to use a different dataset you need to customize data_utils.py.

The default batch size is 512. When GPU memory is insufficient, you can proceed with training by adjusting the value of --gradient_accumulation_steps.

Also can use Automatic Mixed Precision(Amp) to reduce memory usage and train faster

python3 train.py --name cifar10-100_500 --dataset cifar10 --model_type ViT-B_16 --pretrained_dir checkpoint/ViT-B_16.npz --fp16 --fp16_opt_level O2

Results

To verify that the converted model weight is correct, we simply compare it with the author's experimental results. We trained using mixed precision, and --fp16_opt_level was set to O2.

imagenet-21k

model dataset resolution acc(official) acc(this repo) time
ViT-B_16 CIFAR-10 224x224 - 0.9908 3h 13m
ViT-B_16 CIFAR-10 384x384 0.9903 0.9906 12h 25m
ViT_B_16 CIFAR-100 224x224 - 0.923 3h 9m
ViT_B_16 CIFAR-100 384x384 0.9264 0.9228 12h 31m
R50-ViT-B_16 CIFAR-10 224x224 - 0.9892 4h 23m
R50-ViT-B_16 CIFAR-10 384x384 0.99 0.9904 15h 40m
R50-ViT-B_16 CIFAR-100 224x224 - 0.9231 4h 18m
R50-ViT-B_16 CIFAR-100 384x384 0.9231 0.9197 15h 53m
ViT_L_32 CIFAR-10 224x224 - 0.9903 2h 11m
ViT_L_32 CIFAR-100 224x224 - 0.9276 2h 9m
ViT_H_14 CIFAR-100 224x224 - WIP

imagenet-21k + imagenet2012

model dataset resolution acc
ViT-B_16-224 CIFAR-10 224x224 0.99
ViT_B_16-224 CIFAR-100 224x224 0.9245
ViT-L_32 CIFAR-10 224x224 0.9903
ViT-L_32 CIFAR-100 224x224 0.9285

shorter train

  • In the experiment below, we used a resolution size (224x224).
  • tensorboard
upstream model dataset total_steps /warmup_steps acc(official) acc(this repo)
imagenet21k ViT-B_16 CIFAR-10 500/100 0.9859 0.9859
imagenet21k ViT-B_16 CIFAR-10 1000/100 0.9886 0.9878
imagenet21k ViT-B_16 CIFAR-100 500/100 0.8917 0.9072
imagenet21k ViT-B_16 CIFAR-100 1000/100 0.9115 0.9216

Visualization

The ViT consists of a Standard Transformer Encoder, and the encoder consists of Self-Attention and MLP module. The attention map for the input image can be visualized through the attention score of self-attention.

Visualization code can be found at visualize_attention_map.

fig3

Reference

Citations

@article{dosovitskiy2020,
  title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale},
  author={Dosovitskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and  Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil},
  journal={arXiv preprint arXiv:2010.11929},
  year={2020}
}
Owner
Eunkwang Jeon
Eunkwang Jeon
商品推荐系统

商品top50推荐系统 问题建模 本项目的数据集给出了15万左右的用户以及12万左右的商品, 以及对应的经过脱敏处理的用户特征和经过预处理的商品特征,旨在为用户推荐50个其可能购买的商品。 推荐系统架构方案 本项目采用传统的召回+排序的方案。

107 Dec 29, 2022
naked is a Python tool which allows you to strip a model and only keep what matters for making predictions.

naked is a Python tool which allows you to strip a model and only keep what matters for making predictions. The result is a pure Python function with no third-party dependencies that you can simply c

Max Halford 24 Dec 20, 2022
Efficient Householder transformation in PyTorch

Efficient Householder Transformation in PyTorch This repository implements the Householder transformation algorithm for calculating orthogonal matrice

Anton Obukhov 49 Nov 20, 2022
Rule Extraction Methods for Interactive eXplainability

REMIX: Rule Extraction Methods for Interactive eXplainability This repository contains a variety of tools and methods for extracting interpretable rul

Mateo Espinosa Zarlenga 21 Jan 03, 2023
PHOTONAI is a high level python API for designing and optimizing machine learning pipelines.

PHOTONAI is a high level python API for designing and optimizing machine learning pipelines. We've created a system in which you can easily select and

Medical Machine Learning Lab - University of Münster 57 Nov 12, 2022
An efficient framework for reinforcement learning.

rl: An efficient framework for reinforcement learning Requirements Introduction PPO Test Requirements name version Python =3.7 numpy =1.19 torch =1

16 Nov 30, 2022
Code for CVPR 2018 paper --- Texture Mapping for 3D Reconstruction with RGB-D Sensor

G2LTex This repository contains the implementation of "Texture Mapping for 3D Reconstruction with RGB-D Sensor (CVPR2018)" based on mvs-texturing. Due

Fu Yanping(付燕平) 129 Dec 30, 2022
PyTorch common framework to accelerate network implementation, training and validation

pytorch-framework PyTorch common framework to accelerate network implementation, training and validation. This framework is inspired by works from MML

Dongliang Cao 3 Dec 19, 2022
TransNet V2: Shot Boundary Detection Neural Network

TransNet V2: Shot Boundary Detection Neural Network This repository contains code for TransNet V2: An effective deep network architecture for fast sho

Tomáš Souček 212 Dec 27, 2022
[ICCV 2021] Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation

ADDS-DepthNet This is the official implementation of the paper Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation I

LIU_LINA 52 Nov 24, 2022
A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM's

sign-language-detection A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM. The project is built for a vocabular

Hashim 4 Feb 06, 2022
Convenient tool for speeding up the intern/officer review process.

icpc-app-screen Convenient tool for speeding up the intern/officer applicant review process. Eliminates the pain from reading application responses of

1 Oct 30, 2021
Code for "Primitive Representation Learning for Scene Text Recognition" (CVPR 2021)

Primitive Representation Learning Network (PREN) This repository contains the code for our paper accepted by CVPR 2021 Primitive Representation Learni

Ruijie Yan 76 Jan 02, 2023
A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch

A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch The official pytorch implementation of the paper "Towards Faster and Stabilize

Bingchen Liu 455 Jan 08, 2023
Code for our NeurIPS 2021 paper 'Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation'

Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation (NeurIPS 2021) Code for our NeurIPS 2021 paper 'Exploiting the Intri

Shiqi Yang 53 Dec 25, 2022
An unopinionated replacement for PyTorch's Dataset and ImageFolder, that handles Tar archives

Simple Tar Dataset An unopinionated replacement for PyTorch's Dataset and ImageFolder classes, for datasets stored as uncompressed Tar archives. Just

Joao Henriques 47 Dec 20, 2022
discovering subdomains, hidden paths, extracting unique links

python-website-crawler discovering subdomains, hidden paths, extracting unique links pip install -r requirements.txt discover subdomain: You can give

merve 4 Sep 05, 2022
AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition [ArXiv] [Project Page] This repository is the official implementation of AdaMML:

International Business Machines 43 Dec 26, 2022
ReGAN: Sequence GAN using RE[INFORCE|LAX|BAR] based PG estimators

Sequence Generation with GANs trained by Gradient Estimation Requirements: PyTorch v0.3 Python 3.6 CUDA 9.1 (For GPU) Origin The idea is from paper Se

40 Nov 03, 2022
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

TransMaS This repository is the official pytorch implementation of the following paper: NIPS2021 Mixed Supervised Object Detection by TransferringMask

BCMI 49 Jul 27, 2022