AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

Overview

AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition [ArXiv] [Project Page]

This repository is the official implementation of AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition.

Rameswar Panda*, Chun-Fu (Richard) Chen*, Quanfu Fan, Ximeng Sun, Kate Saenko, Aude Oliva, Rogerio Feris, "AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition", ICCV 2021. (*: Equal Contribution)

If you use the codes and models from this repo, please cite our work. Thanks!

@inproceedings{panda2021adamml,
    title={{AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition}},
    author={Panda, Rameswar and Chen, Chun-Fu and Fan, Quanfu and Sun, Ximeng and Saenko, Kate and Oliva, Aude and Feris, Rogerio},
    booktitle={International Conference on Computer Vision (ICCV)},
    year={2021}
}

Requirements

pip3 install torch torchvision librosa tqdm Pillow numpy 

Data Preparation

The dataloader (utils/video_dataset.py) can load RGB frames stored in the following format:

-- dataset_dir
---- train.txt
---- val.txt
---- test.txt
---- videos
------ video_0_folder
-------- 00001.jpg
-------- 00002.jpg
-------- ...
------ video_1_folder
------ ...

Each line in train.txt and val.txt includes 4 elements and separated by a symbol, e.g. space ( ) or semicolon (;). Four elements (in order) include (1) relative paths to video_x_folder from dataset_dir, (2) starting frame number, usually 1, (3) ending frame number, (4) label id (a numeric number).

E.g., a video_x has 300 frames and belong to label 1.

path/to/video_x_folder 1 300 1

The difference for test.txt is that each line will only have 3 elements (no label information).

The same format is used for optical flow but each file (00001.jpg) need to be x_00001.jpg and y_00001.jpg.

On the other hand, for audio data, you need to change the first elements to the path of corresponding wav files, like

path/to/audio_x.wav 1 300 1

After that, you need to update the utils/data_config.py for the datasets accordingly.

We provide the scripts in the tools folder to extract RGB frames and audios from a video. To extract the optical flow, we use the docker image provided by TSN. Please see the help in the script.

Pretrained models

We provide the pretrained models on the Kinetics-Sounds dataset, including the unimodality models and our AdaMML models. You can find all the models here.

Training

After downloding the unimodality pretrained models, here is the command template to train AdaMML:

python3 train.py --multiprocessing-distributed --backbone_net adamml -d 50 \
--groups 8 --frames_per_group 4 -b 72 -j 96 --epochs 20 --warmup_epochs 5 --finetune_epochs 10 \
--modality MODALITY1 MODALITY2 --datadir /PATH/TO/MODALITY1 /PATH/TO/MODALITY2 --dataset DATASET --logdir LOGDIR \
--dense_sampling --fusion_point logits --unimodality_pretrained /PATH/TO/MODEL_MODALITY1 /PATH/TO/MODEL_MODALITY2 \
--learnable_lf_weights --num_segments 5 --cost_weights 1.0 0.005 --causality_modeling lstm --gammas 10.0 --sync-bn \
--lr 0.001 --p_lr 0.01 --lr_scheduler multisteps --lr_steps 10 15

The length of the following arguments depended on how many modalities you would like to include in AdaMML.

  • --modality: the modalities, other augments needs to follow this order
  • --datadir: the data dir for each modality
  • --unimodality_pretrained: the pretrained unimodality model

Note that, to use rgbdiff as a proxy, both rgbdiff and flow needs to be specified in --modality and their corresponding --datadir. However, you only need to provided flow pretrained model in the --unimodality_pretrained

Here are the examples to train AdaMML with different combinations.

RGB + Audio

python3 train.py --multiprocessing-distributed --backbone_net adamml -d 50 \
--groups 8 --frames_per_group 4 -b 72 -j 96 --epochs 20 --warmup_epochs 5 --finetune_epochs 10 \
--modality rgb sound --datadir /PATH/TO/RGB_DATA /PATH/TO/AUDIO_DATA --dataset DATASET --logdir LOGDIR \
--dense_sampling --fusion_point logits --unimodality_pretrained /PATH/TO/RGB_MODEL /PATH/TO/AUDIO_MODEL \
--learnable_lf_weights --num_segments 5 --cost_weights 1.0 0.05 --causality_modeling lstm --gammas 10.0 --sync-bn \
--lr 0.001 --p_lr 0.01 --lr_scheduler multisteps --lr_steps 10 15

RGB + Flow (with RGBDiff as Proxy)

python3 train.py --multiprocessing-distributed --backbone_net adamml -d 50 \
--groups 8 --frames_per_group 4 -b 72 -j 96 --epochs 20 --warmup_epochs 5 --finetune_epochs 10 \
--modality rgb flow rgbdiff --datadir /PATH/TO/RGB_DATA /PATH/TO/FLOW_DATA /PATH/TO/RGB_DATA --dataset DATASET --logdir LOGDIR \
--dense_sampling --fusion_point logits --unimodality_pretrained /PATH/TO/RGB_MODEL /PATH/TO/FLOW_MODEL \
--learnable_lf_weights --num_segments 5 --cost_weights 1.0 1.0 --causality_modeling lstm --gammas 10.0 --sync-bn \
--lr 0.001 --p_lr 0.01 --lr_scheduler multisteps --lr_steps 10 15

RGB + Audio + Flow (with RGBDiff as Proxy)

python3 train.py --multiprocessing-distributed --backbone_net adamml -d 50 \
--groups 8 --frames_per_group 4 -b 72 -j 96 --epochs 20 --warmup_epochs 5 --finetune_epochs 10 \
--modality rgb sound flow rgbdiff --datadir /PATH/TO/RGB_DATA /PATH/TO/AUDIO_DATA /PATH/TO/FLOW_DATA /PATH/TO/RGB_DATA --dataset DATASET --logdir LOGDIR \
--dense_sampling --fusion_point logits --unimodality_pretrained /PATH/TO/RGB_MODEL /PATH/TO/SOUND_MODEL /PATH/TO/FLOW_MODEL \
--learnable_lf_weights --num_segments 5 --cost_weights 0.5 0.05 0.8 --causality_modeling lstm --gammas 10.0 --sync-bn \
--lr 0.001 --p_lr 0.01 --lr_scheduler multisteps --lr_steps 10 15

Evaluation

Testing an AdaMML model is very straight-forward, you can simply use the training command with following modifications:

  • add -e in the command
  • use --pretrained /PATH/TO/MODEL to load the trained model
  • remove --multiprocessing-distributed and --unimodality_pretrained
  • set --val_num_clips if you would like to test under different number of video segments (default is 10)

Here is command template:

python3 train.py -e --backbone_net adamml -d 50 \
--groups 8 --frames_per_group 4 -b 72 -j 96 \
--modality MODALITY1 MODALITY2 --datadir /PATH/TO/MODALITY1 /PATH/TO/MODALITY2 --dataset DATASET --logdir LOGDIR \
--dense_sampling --fusion_point logits --pretrained /PATH/TO/ADAMML_MODEL \
--learnable_lf_weights --num_segments 5 --causality_modeling lstm --sync-bn
You might also like...
AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation
AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

[CVPR'21] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving
[CVPR'21] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving

TransFuser This repository contains the code for the CVPR 2021 paper Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. If you find our

Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral)

DSA^2 F: Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral) This repo is the official imp

A Multi-modal Model Chinese Spell Checker Released on ACL2021.
A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

Self-supervised Multi-modal Hybrid Fusion Network for Brain Tumor Segmentation

JBHI-Pytorch This repository contains a reference implementation of the algorithms described in our paper "Self-supervised Multi-modal Hybrid Fusion N

Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2

CoaDTI Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2 Abstract Environment The test was conducted i

Code of paper Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification.

Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification We provide the codes for repr

4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

[LREC] MMChat: Multi-Modal Chat Dataset on Social Media
[LREC] MMChat: Multi-Modal Chat Dataset on Social Media

MMChat This repo contains the code and data for the LREC2022 paper MMChat: Multi-Modal Chat Dataset on Social Media. Dataset MMChat is a large-scale d

Comments
  • The training details about unimodal pretrained model

    The training details about unimodal pretrained model

    Hi, the whole Adamml model needs the unimodal pretrained models. However, there is no details about this in this project or your paper. Could you please share these details about training the unimodal models. Thanks a lot.

    opened by weizequan 1
Owner
International Business Machines
International Business Machines
Official Pytorch implementation of "Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral)"

Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral): Official Project Webpage This repository provides the off

Kakao Enterprise Corp. 68 Dec 17, 2022
Official repository of "DeepMIH: Deep Invertible Network for Multiple Image Hiding", TPAMI 2022.

DeepMIH: Deep Invertible Network for Multiple Image Hiding (TPAMI 2022) This repo is the official code for DeepMIH: Deep Invertible Network for Multip

Junpeng Jing 67 Nov 22, 2022
202 Jan 06, 2023
Official code for "Distributed Deep Learning in Open Collaborations" (NeurIPS 2021)

Distributed Deep Learning in Open Collaborations This repository contains the code for the NeurIPS 2021 paper "Distributed Deep Learning in Open Colla

Yandex Research 96 Sep 15, 2022
Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization

Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization Code for reproducing our results in the Head2Toe paper. Paper: arxiv.or

Google Research 62 Dec 12, 2022
Chunkmogrify: Real image inversion via Segments

Chunkmogrify: Real image inversion via Segments Teaser video with live editing sessions can be found here This code demonstrates the ideas discussed i

David Futschik 112 Jan 04, 2023
A dual benchmarking study of visual forgery and visual forensics techniques

A dual benchmarking study of facial forgery and facial forensics In recent years, visual forgery has reached a level of sophistication that humans can

8 Jul 06, 2022
CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework

CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework This repository contains a framework for Recommender Systems (RecSys), a

RecSys Lab 8 Jul 03, 2022
This repository attempts to replicate the SqueezeNet architecture and implement the same on an image classification task.

SqueezeNet-Implementation This repository attempts to replicate the SqueezeNet architecture using TensorFlow discussed in the research paper: "Squeeze

Rohan Mathur 3 Dec 13, 2022
Contains a bunch of different python programm tasks

py_tasks Contains a bunch of different python programm tasks Armstrong.py - calculate Armsrong numbers in range from 0 to n with / without cache and c

Dmitry Chmerenko 1 Dec 17, 2021
Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Kento Nishi 22 Jul 07, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
Joint detection and tracking model named DEFT, or ``Detection Embeddings for Tracking.

DEFT: Detection Embeddings for Tracking DEFT: Detection Embeddings for Tracking, Mohamed Chaabane, Peter Zhang, J. Ross Beveridge, Stephen O'Hara

Mohamed Chaabane 253 Dec 18, 2022
Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)

Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021) An efficient PyTorch library for Point Cloud Completion.

Microsoft 119 Jan 02, 2023
PyTorch package for the discrete VAE used for DALL·E.

Overview [Blog] [Paper] [Model Card] [Usage] This is the official PyTorch package for the discrete VAE used for DALL·E. Installation Before running th

OpenAI 9.5k Jan 05, 2023
Cross-Modal Contrastive Learning for Text-to-Image Generation

Cross-Modal Contrastive Learning for Text-to-Image Generation This repository hosts the open source JAX implementation of XMC-GAN. Setup instructions

Google Research 94 Nov 12, 2022
Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

2 Nov 15, 2021
Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec

Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec This repo

Building and Urban Data Science (BUDS) Group 5 Dec 02, 2022
MMGeneration is a powerful toolkit for generative models, based on PyTorch and MMCV.

Documentation: https://mmgeneration.readthedocs.io/ Introduction English | 简体中文 MMGeneration is a powerful toolkit for generative models, especially f

OpenMMLab 1.3k Dec 29, 2022
The official codes for the ICCV2021 presentation "Uniformity in Heterogeneity: Diving Deep into Count Interval Partition for Crowd Counting"

UEPNet (ICCV2021 Poster Presentation) This repository contains codes for the official implementation in PyTorch of UEPNet as described in Uniformity i

Tencent YouTu Research 15 Dec 14, 2022