Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)

Overview

Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)

An efficient PyTorch library for Point Cloud Completion.

Project page | Paper | Video

Chulin Xie*, Chuxin Wang*, Bo Zhang, Hao Yang, Dong Chen, and Fang Wen. (*Equal contribution)

Abstract

We proposed a novel Style-based Point Generator with Adversarial Rendering (SpareNet) for point cloud completion. Firstly, we present the channel-attentive EdgeConv to fully exploit the local structures as well as the global shape in point features. Secondly, we observe that the concatenation manner used by vanilla foldings limits its potential of generating a complex and faithful shape. Enlightened by the success of StyleGAN, we regard the shape feature as style code that modulates the normalization layers during the folding, which considerably enhances its capability. Thirdly, we realize that existing point supervisions, e.g., Chamfer Distance or Earth Mover’s Distance, cannot faithfully reflect the perceptual quality of the reconstructed points. To address this, we propose to project the completed points to depth maps with a differentiable renderer and apply adversarial training to advocate the perceptual realism under different viewpoints. Comprehensive experiments on ShapeNet and KITTI prove the effectiveness of our method, which achieves state-of-the-art quantitative performance while offering superior visual quality.

Installation

  1. Create a virtual environment via conda.

    conda create -n sparenet python=3.7
    conda activate sparenet
  2. Install torch and torchvision.

    conda install pytorch cudatoolkit=10.1 torchvision -c pytorch
  3. Install requirements.

    pip install -r requirements.txt
  4. Install cuda

    sh setup_env.sh

Dataset

  • Download the processed ShapeNet dataset generated by GRNet, and the KITTI dataset.

  • Update the file path of the datasets in configs/base_config.py:

    __C.DATASETS.shapenet.partial_points_path = "/path/to/datasets/ShapeNetCompletion/%s/partial/%s/%s/%02d.pcd"
    __C.DATASETS.shapenet.complete_points_path = "/path/to/datasets/ShapeNetCompletion/%s/complete/%s/%s.pcd"
    __C.DATASETS.kitti.partial_points_path = "/path/to/datasets/KITTI/cars/%s.pcd"
    __C.DATASETS.kitti.bounding_box_file_path = "/path/to/datasets/KITTI/bboxes/%s.txt"
    
    # Dataset Options: ShapeNet, ShapeNetCars, KITTI
    __C.DATASET.train_dataset = "ShapeNet"
    __C.DATASET.test_dataset = "ShapeNet"
    

Get Started

Inference Using Pretrained Model

The pretrained models:

Train

All log files in the training process, such as log message, checkpoints, etc, will be saved to the work directory.

  • run

    python   --gpu ${GPUS}\
             --work_dir ${WORK_DIR} \
             --model ${network} \
             --weights ${path to checkpoint}
  • example

    python  train.py --gpu 0,1,2,3 --work_dir /path/to/logfiles --model sparenet --weights /path/to/cheakpoint

Differentiable Renderer

A fully differentiable point renderer that enables end-to-end rendering from 3D point cloud to 2D depth maps. See the paper for details.

Usage of Renderer

The inputs of renderer are pcd, views and radius, and the outputs of renderer are depth_maps.

  • example
    # `projection_mode`: a str with value "perspective" or "orthorgonal"
    # `eyepos_scale`: a float that defines the distance of eyes to (0, 0, 0)
    # `image_size`: an int defining the output image size
    renderer = ComputeDepthMaps(projection_mode, eyepos_scale, image_size)
    
    # `data`: a tensor with shape [batch_size, num_points, 3]
    # `view_id`: the index of selected view satisfying 0 <= view_id < 8
    # `radius_list`: a list of floats, defining the kernel radius to render each point
    depthmaps = renderer(data, view_id, radius_list)

License

The codes and the pretrained model in this repository are under the MIT license as specified by the LICENSE file.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

BibTex

If you like our work and use the codebase or models for your research, please cite our work as follows.

@inproceedings{xie2021stylebased,
      title={Style-based Point Generator with Adversarial Rendering for Point Cloud Completion}, 
      author={Chulin Xie and Chuxin Wang and Bo Zhang and Hao Yang and Dong Chen and Fang Wen},
      booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
      year={2021},
}
Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Dynamic Token Normalization Improves Vision Transformers

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
[ICCV 2021] Relaxed Transformer Decoders for Direct Action Proposal Generation

RTD-Net (ICCV 2021) This repo holds the codes of paper: "Relaxed Transformer Decoders for Direct Action Proposal Generation", accepted in ICCV 2021. N

Multimedia Computing Group, Nanjing University 80 Nov 30, 2022
A simple Tensorflow based library for deep and/or denoising AutoEncoder.

libsdae - deep-Autoencoder & denoising autoencoder A simple Tensorflow based library for Deep autoencoder and denoising AE. Library follows sklearn st

Rajarshee Mitra 147 Nov 18, 2022
Repository for Driving Style Recognition algorithms for Autonomous Vehicles

Driving Style Recognition Using Interval Type-2 Fuzzy Inference System and Multiple Experts Decision Making Created by Iago Pachêco Gomes at USP - ICM

Iago Gomes 9 Nov 28, 2022
A Keras implementation of YOLOv3 (Tensorflow backend)

keras-yolo3 Introduction A Keras implementation of YOLOv3 (Tensorflow backend) inspired by allanzelener/YAD2K. Quick Start Download YOLOv3 weights fro

7.1k Jan 03, 2023
code for Fast Point Cloud Registration with Optimal Transport

robot This is the repository for the paper "Accurate Point Cloud Registration with Robust Optimal Transport". We are in the process of refactoring the

28 Jan 04, 2023
Self-training for Few-shot Transfer Across Extreme Task Differences

Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP) Introduction This repo contains the official implementation of the follo

Cheng Perng Phoo 33 Oct 31, 2022
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Created by Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas from Sta

Charles R. Qi 4k Dec 30, 2022
A collection of semantic image segmentation models implemented in TensorFlow

A collection of semantic image segmentation models implemented in TensorFlow. Contains data-loaders for the generic and medical benchmark datasets.

bobby 16 Dec 06, 2019
RLBot Python bindings for the Rust crate rl_ball_sym

RLBot Python bindings for rl_ball_sym 0.6 Prerequisites: Rust & Cargo Build Tools for Visual Studio RLBot - Verify that the file %localappdata%\RLBotG

Eric Veilleux 2 Nov 25, 2022
An ML & Correlation platform for transforming disparate data points of interest into usable intelligence.

SSIDprobeCollector An ML & Correlation platform for transforming disparate data points of interest into usable intelligence. At a High level the platf

Bill Reyor 1 Jan 30, 2022
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular

vanint 18 Dec 17, 2022
Graph-based community clustering approach to extract protein domains from a predicted aligned error matrix

Using a predicted aligned error matrix corresponding to an AlphaFold2 model , returns a series of lists of residue indices, where each list corresponds to a set of residues clustering together into a

Tristan Croll 24 Nov 23, 2022
Joint Gaussian Graphical Model Estimation: A Survey

Joint Gaussian Graphical Model Estimation: A Survey Test Models Fused graphical lasso [1] Group graphical lasso [1] Graphical lasso [1] Doubly joint s

Koyejo Lab 1 Aug 10, 2022
Latent Execution for Neural Program Synthesis

Latent Execution for Neural Program Synthesis This repo provides the code to replicate the experiments in the paper Xinyun Chen, Dawn Song, Yuandong T

Xinyun Chen 16 Oct 02, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A pyTorch implementation for AAAI-2022 paper DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Bri

Ronnie Rocket 55 Sep 14, 2022
Interpolation-based reduced-order models

Interpolation-reduced-order-models Interpolation-based reduced-order models High-fidelity computational fluid dynamics (CFD) solutions are time consum

Donovan Blais 1 Jan 10, 2022
Proto-RL: Reinforcement Learning with Prototypical Representations

Proto-RL: Reinforcement Learning with Prototypical Representations This is a PyTorch implementation of Proto-RL from Reinforcement Learning with Proto

Denis Yarats 74 Dec 06, 2022
UIUCTF 2021 Public Challenge Repository

UIUCTF-2021-Public UIUCTF 2021 Public Challenge Repository Notes: every challenge folder contains a challenge.yml file in the format for ctfcli, CTFd'

SIGPwny 15 Nov 03, 2022
This is an official implementation of our CVPR 2021 paper "Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression" (https://arxiv.org/abs/2104.02300)

Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression Introduction In this paper, we are interested in the bottom-up paradigm of estima

HRNet 367 Dec 27, 2022