Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"

Related tags

Deep Learningsimnet
Overview

SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo

Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan, Mark Tjersland

paper / project site / blog

This repo contains the code to train the SimNet architecture on procedurally generated simulation data from scratch (no transfer learning required). We also provide a small set of in-house manually labelled validation data containing 3d oriented bounding box labels.

Training the model

Requirements

You will need a Nvidia GPU with at least 12GB of RAM. All code was tested and developed on Ubuntu 20.04.

All commands are assumed to be run from the root of the simnet repo directory (represented by $SIMNET_REPO in commands below).

Setup

Python

Create a python 3.8 virtual environment and install requirements:

cd $SIMNET_REPO
conda create -y --prefix ./env python=3.8
./env/bin/python -m pip install --upgrade pip
./env/bin/python -m pip install -r frozen_requirements.txt

Docker

Make sure docker is installed and working without requiring sudo. If it is not installed, follow the official instructions for setting it up.

docker ps

Wandb

Launch wandb local server for logging training results (you do not need to do this if you already have a wandb account setup). This will launch a local webserver http://localhost:8080 using docker that you can use to visualize training progress and validation images. You will have to visit the http://localhost:8080/authorize page to get the local API access token (this can take a few minutes the first time). Once you get the key you can paste it into the terminal to continue.

cd $SIMNET_REPO
./env/bin/wandb local

Datasets

Download and untar train+val datasets simnet2021a.tar (18GB, md5 checksum:b8e1d3cb7200b44b1de223e87141f14b). This file contains all the training and validation you need to replicate our small objects results.

cd $SIMNET_REPO
wget https://tri-robotics-public.s3.amazonaws.com/github/simnet/datasets/simnet2021a.tar -P datasets
tar xf datasets/simnet2021a.tar -C datasets

Train and Validate

Overfit test:

./runner.sh net_train.py @config/net_config_overfit.txt

Full training run (requires 12GB GPU memory)

./runner.sh net_train.py @config/net_config.txt

Results

Check wandb (http://localhost:8080) to see training progress. On a Titan V, it takes about 48 hours for training to converge, but decent validation results can be seen around 24 hours.

Example validation image visualization:

Example 3D oriented bounding box mAP on validation dataset:

Licenses

The source code is released under the MIT license.

The datasets are released under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

You might also like...
The code release of paper Low-Light Image Enhancement with Normalizing Flow
The code release of paper Low-Light Image Enhancement with Normalizing Flow

[AAAI 2022] Low-Light Image Enhancement with Normalizing Flow Paper | Project Page Low-Light Image Enhancement with Normalizing Flow Yufei Wang, Renji

PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Code release for NeX: Real-time View Synthesis with Neural Basis Expansion
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

Code release for
Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021)

Transferable Semantic Augmentation for Domain Adaptation Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021) Paper

Code release for
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

We will release the code of "ConTNet: Why not use convolution and transformer at the same time?" in this repo

ConTNet Introduction ConTNet (Convlution-Tranformer Network) is proposed mainly in response to the following two issues: (1) ConvNets lack a large rec

This is the dataset and code release of the OpenRooms Dataset.
This is the dataset and code release of the OpenRooms Dataset.

This is the dataset and code release of the OpenRooms Dataset.

Code release for DS-NeRF (Depth-supervised Neural Radiance Fields)
Code release for DS-NeRF (Depth-supervised Neural Radiance Fields)

Depth-supervised NeRF: Fewer Views and Faster Training for Free Project | Paper | YouTube Pytorch implementation of our method for learning neural rad

Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images
Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images

BlockGAN Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images BlockGAN: Learning 3D Object-aware Scene Rep

Comments
  • depth noise model

    depth noise model

    I was looking through the code and was curious about the depth noise model. I found this: https://github.com/ToyotaResearchInstitute/simnet/blob/main/simnet/lib/camera.py but I can't seem to find camera_noise. Is it in the repository?

    opened by seann999 1
  • Pre-trained Models

    Pre-trained Models

    Hi Kevin and the team,

    Thanks for making the data and code available, really impressive work on the paper.

    Is there any plans to make the pre-trained model available, especially the SimNet benchmarked in the paper.

    Thanks,

    opened by ppyht2 0
Releases(v0.0.1)
Enhancing Knowledge Tracing via Adversarial Training

Enhancing Knowledge Tracing via Adversarial Training This repository contains source code for the paper "Enhancing Knowledge Tracing via Adversarial T

Xiaopeng Guo 14 Oct 24, 2022
Official Repository of NeurIPS2021 paper: PTR

PTR: A Benchmark for Part-based Conceptual, Relational, and Physical Reasoning Figure 1. Dataset Overview. Introduction A critical aspect of human vis

Yining Hong 32 Jun 02, 2022
The GitHub repository for the paper: “Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction“.

SCINet This is the original PyTorch implementation of the following work: Time Series is a Special Sequence: Forecasting with Sample Convolution and I

386 Jan 01, 2023
Pytorch implementation for "Open Compound Domain Adaptation" (CVPR 2020 ORAL)

Open Compound Domain Adaptation [Project] [Paper] [Demo] [Blog] Overview Open Compound Domain Adaptation (OCDA) is the author's re-implementation of t

Zhongqi Miao 137 Dec 15, 2022
Implementation of "Selection via Proxy: Efficient Data Selection for Deep Learning" from ICLR 2020.

Selection via Proxy: Efficient Data Selection for Deep Learning This repository contains a refactored implementation of "Selection via Proxy: Efficien

Stanford Future Data Systems 70 Nov 16, 2022
Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification

Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification Suncheng Xiang Shanghai Jiao Tong University Over

SunchengXiang 68 Dec 13, 2022
This script runs neural style transfer against the provided content image.

Neural Style Transfer Content Style Output Description: This script runs neural style transfer against the provided content image. The content image m

Martynas Subonis 0 Nov 25, 2021
An University Project of Quera Web Crawling.

WebCrawlerProject An University Project of Quera Web Crawling. خزشگر اینستاگرام در این پروژه شما باید با استفاده از کتابخانه های زیر یک خزشگر اینستاگر

Mahdi 3 Aug 12, 2022
Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

NLOS-OT Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted) Description In this reposit

Ruixu Geng(耿瑞旭) 16 Dec 16, 2022
African language Speech Recognition - Speech-to-Text

Swahili-Speech-To-Text Table of Contents Swahili-Speech-To-Text Overview Scenario Approach Project Structure data: models: notebooks: scripts tests: l

2 Jan 05, 2023
Dcf-game-infrastructure-public - Contains all the components necessary to run a DC finals (attack-defense CTF) game from OOO

dcf-game-infrastructure All the components necessary to run a game of the OOO DC

Order of the Overflow 46 Sep 13, 2022
[WWW 2022] Zero-Shot Stance Detection via Contrastive Learning

PT-HCL for Zero-Shot Stance Detection The code of this repository is constantly being updated... Please look forward to it! Introduction This reposito

Akuchi 12 Dec 21, 2022
CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

Frederick Wang 3 Apr 26, 2022
This is a re-implementation of TransGAN: Two Pure Transformers Can Make One Strong GAN (CVPR 2021) in PyTorch.

TransGAN: Two Transformers Can Make One Strong GAN [YouTube Video] Paper Authors: Yifan Jiang, Shiyu Chang, Zhangyang Wang CVPR 2021 This is re-implem

Ahmet Sarigun 79 Jan 05, 2023
Covid19-Forecasting - An interactive website that tracks, models and predicts COVID-19 Cases

Covid-Tracker This is an interactive website that tracks, models and predicts CO

Adam Lahmadi 1 Feb 01, 2022
Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton

Plant Pathology 2020 FGVC7 Introduction A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant

Bharat Giddwani 0 Feb 25, 2022
Moment-DETR code and QVHighlights dataset

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
An OpenAI-Gym Package for Training and Testing Reinforcement Learning algorithms with OpenSim Models

Authors: Utkarsh A. Mishra and Dr. Dimitar Stanev Advisors: Dr. Dimitar Stanev and Prof. Auke Ijspeert, Biorobotics Laboratory (BioRob), EPFL Video Pl

Utkarsh Mishra 16 Dec 13, 2022
More than a hundred strange attractors

dysts Analyze more than a hundred chaotic systems. Basic Usage Import a model and run a simulation with default initial conditions and parameter value

William Gilpin 185 Dec 23, 2022
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022