Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images

Related tags

Deep LearningBlockGAN
Overview

BlockGAN

Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images

trans add

BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images
Thu Nguyen-Phuoc, Chrisian Richardt, Long Mai, Yong-liang Yang, Niloy Mitra

Dataset

Please contact Thu Nguyen-Phuoc for datasets.

Training

  • To run the training of BlockGAN
python main.py ./config_synthetic.json --dataset Chair --input_fname_pattern ".png" 

python main.py ./config_real.json --dataset Car --input_fname_pattern ".jpg"

Help with config.json

image_path:
			Full path to the dataset directory.
gpu:
			Index number of the GPU to use. Default: 0.
batch_size:
			Batch size. Defaults is 32.
max_epochs:
			Number of epochs to train. Defaults is 50.
epoch_step:
			Number of epochs to train before starting to decrease the learning rate. Default is 25.
z_dim:
			Dimension of the noise vector. Defaults is 90.
z_dim2:
			Dimension of the noise vector. Defaults is 30.			
d_eta:
			Learning rate of the discriminator.Default is 0.0001
g_eta:
			Learning rate of the generator.Default is 0.0001
reduce_eta:
			Reduce learning rate during training.Default is False
D_update:
			Number of updates for the Discriminator for every training step.Default is 1.
G_update:
			Number of updates for the Generator for every training step.Default is 2.
beta1:
			Beta 1 for the Adam optimiser. Default is 0.5
beta2:
			Beta 2 for the Adam optimiser. Default is 0.999
discriminator:
			Name of the discriminator to use. 
generator:
			Name of the generator to use. 
view_func:
			Name of the view sampling function to use.
skew_func:
			Name of the perspective skew function to use.
train_func:
			Name of the train function to use.
build_func:
			Name of the build function to use.
style_disc:
			Use Style discriminator. Useful for training images at 128.
sample_z:
			Distribution to sample the noise fector. Default is "uniform".
add_D_noise:
			Add noise to the input of the discriminator. Default is "false".
DStyle_lambda:
			Lambda for the style discriminator loss. Default is 1.0
ele_low:
    		        Default is 70.
ele_high:
			Default is 110.
azi_low:
			Default is 0.
azi_high:
			Default is 360.
scale_low:
			Default is 1.0
scale_high:
			Default is 1.0
x_low:
			Default is 0.
x_high:
			Default is 0.
y_low:
			Default is 0.
y_high:
			Default is 0.
z_low:
			Default is 0.
z_high:
			Default is 0.
with_translation:
			To use translation in 3D transformation. Default is "true".
with_scale:
			To use scaling in 3D transformation. Default is "true".
focal_length:
			Camera parameter. Default is 35.
sensor_size:
			Camera parameter. Default is 32.
camera_dist:
			Camera distance. Default is 11.
new_size:
			Voxel grid size. Default is 16.	
size:
			Voxel grid size. Default is 16.	
output_dir: 
			Full path to the output directory.

Citation

If you use this code for your research, please cite our paper

@inproceedings{BlockGAN2020,
  title={ BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images  },
  author={Nguyen-Phuoc, Thu and Richardt, Christian and Mai, Long and Yang, Yong-Liang and Mitra, Niloy},
  booktitle =  {Advances in Neural Information Processing Systems 33},
 month = {Nov},
 year = {2020}
}
Language models are open knowledge graphs ( non official implementation )

language-models-are-knowledge-graphs-pytorch Language models are open knowledge graphs ( work in progress ) A non official reimplementation of Languag

theblackcat102 132 Dec 18, 2022
Everything about being a TA for ITP/AP course!

تی‌ای بودن! تی‌ای یا دستیار استاد از نقش‌های رایج بین دانشجویان مهندسی است، این ریپوزیتوری قرار است نکات مهم درمورد تی‌ای بودن و تی ای شدن را به ما نش

<a href=[email protected]"> 14 Sep 10, 2022
Torch-ngp - A pytorch implementation of the hash encoder proposed in instant-ngp

HashGrid Encoder (WIP) A pytorch implementation of the HashGrid Encoder from ins

hawkey 1k Jan 01, 2023
Pytorch ImageNet1k Loader with Bounding Boxes.

ImageNet 1K Bounding Boxes For some experiments, you might wanna pass only the background of imagenet images vs passing only the foreground. Here, I'v

Amin Ghiasi 11 Oct 15, 2022
Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)

On the Generative Utility of Cyclic Conditionals This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals"

Chang Liu 44 Nov 16, 2022
Image based Human Fall Detection

Here I integrated the YOLOv5 object detection algorithm with my own created dataset which consists of human activity images to achieve low cost, high accuracy, and real-time computing requirements

UTTEJ KUMAR 12 Dec 11, 2022
ReGAN: Sequence GAN using RE[INFORCE|LAX|BAR] based PG estimators

Sequence Generation with GANs trained by Gradient Estimation Requirements: PyTorch v0.3 Python 3.6 CUDA 9.1 (For GPU) Origin The idea is from paper Se

40 Nov 03, 2022
The Generic Manipulation Driver Package - Implements a ROS Interface over the robotics toolbox for Python

Armer Driver Armer aims to provide an interface layer between the hardware drivers of a robotic arm giving the user control in several ways: Joint vel

QUT Centre for Robotics (QCR) 13 Nov 26, 2022
[ICLR 2021] Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization

Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma

Kaidi Cao 29 Oct 20, 2022
Sparse Physics-based and Interpretable Neural Networks

Sparse Physics-based and Interpretable Neural Networks for PDEs This repository contains the code and manuscript for research done on Sparse Physics-b

28 Jan 03, 2023
PyTorch code to run synthetic experiments.

Code repository for Invariant Risk Minimization Source code for the paper: @article{InvariantRiskMinimization, title={Invariant Risk Minimization}

Facebook Research 345 Dec 12, 2022
Utilizes Pose Estimation to offer sprinters cues based on an image of their running form.

Running-Form-Correction Utilizes Pose Estimation to offer sprinters cues based on an image of their running form. How to Run Dependencies You will nee

3 Nov 08, 2022
Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-art fuzzing techniques

About Fuzzification Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-

gts3.org (<a href=[email protected])"> 55 Oct 25, 2022
MetaDrive: Composing Diverse Scenarios for Generalizable Reinforcement Learning

MetaDrive: Composing Diverse Driving Scenarios for Generalizable RL [ Documentation | Demo Video ] MetaDrive is a driving simulator with the following

DeciForce: Crossroads of Machine Perception and Autonomy 276 Jan 04, 2023
This is a five-step framework for the development of intrusion detection systems (IDS) using machine learning (ML) considering model realization, and performance evaluation.

AB-TRAP: building invisibility shields to protect network devices The AB-TRAP framework is applicable to the development of Network Intrusion Detectio

Lab-C2DC - Laboratory of Command and Control and Cyber-security 17 Jan 04, 2023
Official Code for VideoLT: Large-scale Long-tailed Video Recognition (ICCV 2021)

Pytorch Code for VideoLT [Website][Paper] Updates [10/29/2021] Features uploaded to Google Drive, for access please send us an e-mail: zhangxing18 at

Skye 26 Sep 18, 2022
Official Implementation of SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations

Official Implementation of SimIPU SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations Since

Zhyever 37 Dec 01, 2022
Fast convergence of detr with spatially modulated co-attention

Fast convergence of detr with spatially modulated co-attention Usage There are no extra compiled components in SMCA DETR and package dependencies are

peng gao 135 Dec 07, 2022
Implementation of the CVPR 2021 paper "Online Multiple Object Tracking with Cross-Task Synergy"

Online Multiple Object Tracking with Cross-Task Synergy This repository is the implementation of the CVPR 2021 paper "Online Multiple Object Tracking

54 Oct 15, 2022
Code for our paper "Multi-scale Guided Attention for Medical Image Segmentation"

Medical Image Segmentation with Guided Attention This repository contains the code of our paper: "'Multi-scale self-guided attention for medical image

Ashish Sinha 394 Dec 28, 2022