Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images

Related tags

Deep LearningBlockGAN
Overview

BlockGAN

Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images

trans add

BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images
Thu Nguyen-Phuoc, Chrisian Richardt, Long Mai, Yong-liang Yang, Niloy Mitra

Dataset

Please contact Thu Nguyen-Phuoc for datasets.

Training

  • To run the training of BlockGAN
python main.py ./config_synthetic.json --dataset Chair --input_fname_pattern ".png" 

python main.py ./config_real.json --dataset Car --input_fname_pattern ".jpg"

Help with config.json

image_path:
			Full path to the dataset directory.
gpu:
			Index number of the GPU to use. Default: 0.
batch_size:
			Batch size. Defaults is 32.
max_epochs:
			Number of epochs to train. Defaults is 50.
epoch_step:
			Number of epochs to train before starting to decrease the learning rate. Default is 25.
z_dim:
			Dimension of the noise vector. Defaults is 90.
z_dim2:
			Dimension of the noise vector. Defaults is 30.			
d_eta:
			Learning rate of the discriminator.Default is 0.0001
g_eta:
			Learning rate of the generator.Default is 0.0001
reduce_eta:
			Reduce learning rate during training.Default is False
D_update:
			Number of updates for the Discriminator for every training step.Default is 1.
G_update:
			Number of updates for the Generator for every training step.Default is 2.
beta1:
			Beta 1 for the Adam optimiser. Default is 0.5
beta2:
			Beta 2 for the Adam optimiser. Default is 0.999
discriminator:
			Name of the discriminator to use. 
generator:
			Name of the generator to use. 
view_func:
			Name of the view sampling function to use.
skew_func:
			Name of the perspective skew function to use.
train_func:
			Name of the train function to use.
build_func:
			Name of the build function to use.
style_disc:
			Use Style discriminator. Useful for training images at 128.
sample_z:
			Distribution to sample the noise fector. Default is "uniform".
add_D_noise:
			Add noise to the input of the discriminator. Default is "false".
DStyle_lambda:
			Lambda for the style discriminator loss. Default is 1.0
ele_low:
    		        Default is 70.
ele_high:
			Default is 110.
azi_low:
			Default is 0.
azi_high:
			Default is 360.
scale_low:
			Default is 1.0
scale_high:
			Default is 1.0
x_low:
			Default is 0.
x_high:
			Default is 0.
y_low:
			Default is 0.
y_high:
			Default is 0.
z_low:
			Default is 0.
z_high:
			Default is 0.
with_translation:
			To use translation in 3D transformation. Default is "true".
with_scale:
			To use scaling in 3D transformation. Default is "true".
focal_length:
			Camera parameter. Default is 35.
sensor_size:
			Camera parameter. Default is 32.
camera_dist:
			Camera distance. Default is 11.
new_size:
			Voxel grid size. Default is 16.	
size:
			Voxel grid size. Default is 16.	
output_dir: 
			Full path to the output directory.

Citation

If you use this code for your research, please cite our paper

@inproceedings{BlockGAN2020,
  title={ BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images  },
  author={Nguyen-Phuoc, Thu and Richardt, Christian and Mai, Long and Yang, Yong-Liang and Mitra, Niloy},
  booktitle =  {Advances in Neural Information Processing Systems 33},
 month = {Nov},
 year = {2020}
}
PyTorch implementation of Memory-based semantic segmentation for off-road unstructured natural environments.

MemSeg: Memory-based semantic segmentation for off-road unstructured natural environments Introduction This repository is a PyTorch implementation of

11 Nov 28, 2022
Matching python environment code for Lux AI 2021 Kaggle competition, and a gym interface for RL models.

Lux AI 2021 python game engine and gym This is a replica of the Lux AI 2021 game ported directly over to python. It also sets up a classic Reinforceme

Geoff McDonald 74 Nov 03, 2022
Plug-n-Play Reinforcement Learning in Python with OpenAI Gym and JAX

coax is built on top of JAX, but it doesn't have an explicit dependence on the jax python package. The reason is that your version of jaxlib will depend on your CUDA version.

128 Dec 27, 2022
Github project for Attention-guided Temporal Coherent Video Object Matting.

Attention-guided Temporal Coherent Video Object Matting This is the Github project for our paper Attention-guided Temporal Coherent Video Object Matti

71 Dec 19, 2022
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021) Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann Mix3D is

Alexey Nekrasov 189 Dec 26, 2022
The hippynn python package - a modular library for atomistic machine learning with pytorch.

The hippynn python package - a modular library for atomistic machine learning with pytorch. We aim to provide a powerful library for the training of a

Los Alamos National Laboratory 37 Dec 29, 2022
LAMDA: Label Matching Deep Domain Adaptation

LAMDA: Label Matching Deep Domain Adaptation This is the implementation of the paper LAMDA: Label Matching Deep Domain Adaptation which has been accep

Tuan Nguyen 9 Sep 06, 2022
Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Table of Content Introduction Datasets Getting Started Requirements Usage Example Training & Evaluation CPM: Color-Pattern Makeup Transfer CPM is a ho

VinAI Research 248 Dec 13, 2022
BiSeNet based on pytorch

BiSeNet BiSeNet based on pytorch 0.4.1 and python 3.6 Dataset Download CamVid dataset from Google Drive or Baidu Yun(6xw4). Pretrained model Download

367 Dec 26, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
[ICCV '21] In this repository you find the code to our paper Keypoint Communities

Keypoint Communities In this repository you will find the code to our ICCV '21 paper: Keypoint Communities Duncan Zauss, Sven Kreiss, Alexandre Alahi,

Duncan Zauss 262 Dec 13, 2022
Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER (WIP) Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEER is an e

Alipay 6 Dec 17, 2022
Decision Transformer: A brand new Offline RL Pattern

DecisionTransformer_StepbyStep Intro Decision Transformer: A brand new Offline RL Pattern. 这是关于NeurIPS 2021 热门论文Decision Transformer的复现。 👍 原文地址: Deci

Irving 14 Nov 22, 2022
[ICLR 2021] Is Attention Better Than Matrix Decomposition?

Enjoy-Hamburger 🍔 Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021) Under construction. Introduction T

Gsunshine 271 Dec 29, 2022
Feup-csr - Repository holding my group's submission to the CSR project competition

CSR Competições de Swarm Robotics Swarm Robotics Competitions This repository holds the files submitted for the CSR project competition. Project group

Nuno Pereira 1 Jan 04, 2022
The first machine learning framework that encourages learning ML concepts instead of memorizing class functions.

SeaLion is designed to teach today's aspiring ml-engineers the popular machine learning concepts of today in a way that gives both intuition and ways of application. We do this through concise algori

Anish 324 Dec 27, 2022
Orchestrating Distributed Materials Acceleration Platform Tutorial

Orchestrating Distributed Materials Acceleration Platform Tutorial This tutorial for orchestrating distributed materials acceleration platform was pre

BIG-MAP 1 Jan 25, 2022
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

causal-bald | Abstract | Installation | Example | Citation | Reproducing Results DUE An implementation of the methods presented in Causal-BALD: Deep B

OATML 13 Oct 07, 2022
PyTorchMemTracer - Depict GPU memory footprint during DNN training of PyTorch

A Memory Tracer For PyTorch OOM is a nightmare for PyTorch users. However, most

Jiarui Fang 9 Nov 14, 2022