Official Code for VideoLT: Large-scale Long-tailed Video Recognition (ICCV 2021)

Overview

Pytorch Code for VideoLT

[Website][Paper]

Updates

  • [10/29/2021] Features uploaded to Google Drive, for access please send us an e-mail: zhangxing18 at fudan.edu.cn
  • [09/28/2021] Features uploaded to Aliyun Drive(deprecated), for access please send us an e-mail: zhangxing18 at fudan.edu.cn
  • [08/23/2021] Checkpoint links uploaded, sorry we are handling campus network bandwidth limitation, dataset will be released in this weeek.
  • [08/15/2021] Code released. Dataset download links and checkpoints links will be updated in a week.
  • [07/29/2021] Dataset released, visit https://videolt.github.io/ for downloading.
  • [07/23/2021] VideoLT is accepted by ICCV2021.

concept

Overview

VideoLT is a large-scale long-tailed video recognition dataset, as a step toward real-world video recognition. We provide VideoLT dataset and long-tailed baselines in this repo including:

Data Preparation

Please visit https://videolt.github.io/ to obtain download links. We provide raw videos and extracted features.

For using extracted features, please modify dataset/dutils.py and set the correct path to features.

Model Zoo

The baseline scripts and checkpoints are provided in MODELZOO.md.

FrameStack

FrameStack is simple yet effective approach for long-tailed video recognition which re-samples training data at the frame level and adopts a dynamic sampling strategy based on knowledge learned by the network. The rationale behind FrameStack is to dynamically sample more frames from videos in tail classes and use fewer frames for those from head classes.

framestack

Usage

Requirement

pip install -r requirements.txt

Prepare Data Path

  1. Modify FEATURE_NAME, PATH_TO_FEATURE and FEATURE_DIM in dataset/dutils.py.

  2. Set ROOT in dataset/dutils.py to labels folder. The directory structure is:

    labels
    |-- count-labels-train.lst
    |-- test.lst
    |-- test_videofolder.txt
    |-- train.lst
    |-- train_videofolder.txt
    |-- val_videofolder.txt
    `-- validate.lst

Train

We provide scripts for training. Please refer to MODELZOO.md.

Example training scripts:

FEATURE_NAME='ResNet101'

export CUDA_VISIBLE_DEVICES='2'
python base_main.py  \
     --augment "mixup" \
     --feature_name $FEATURE_NAME \
     --lr 0.0001 \
     --gd 20 --lr_steps 30 60 --epochs 100 \
     --batch-size 128 -j 16 \
     --eval-freq 5 \
     --print-freq 20 \
     --root_log=$FEATURE_NAME-log \
     --root_model=$FEATURE_NAME'-checkpoints' \
     --store_name=$FEATURE_NAME'_bs128_lr0.0001_lateavg_mixup' \
     --num_class=1004 \
     --model_name=NonlinearClassifier \
     --train_num_frames=60 \
     --val_num_frames=150 \
     --loss_func=BCELoss \

Note: Set args.resample, args.augment and args.loss_func can apply multiple long-tailed stratigies.

Options:

    args.resample: ['None', 'CBS','SRS']
    args.augment : ['None', 'mixup', 'FrameStack']
    args.loss_func: ['BCELoss', 'LDAM', 'EQL', 'CBLoss', 'FocalLoss']

Test

We provide scripts for testing in scripts. Modify CKPT to saved checkpoints.

Example testing scripts:

FEATURE_NAME='ResNet101'
CKPT='VideoLT_checkpoints/ResNet-101/ResNet101_bs128_lr0.0001_lateavg_mixup/ckpt.best.pth.tar'

export CUDA_VISIBLE_DEVICES='1'
python base_test.py \
     --resume $CKPT \
     --feature_name $FEATURE_NAME \
     --batch-size 128 -j 16 \
     --print-freq 20 \
     --num_class=1004 \
     --model_name=NonlinearClassifier \
     --train_num_frames=60 \
     --val_num_frames=150 \
     --loss_func=BCELoss \

Citing

If you find VideoLT helpful for your research, please consider citing:

@misc{zhang2021videolt,
title={VideoLT: Large-scale Long-tailed Video Recognition}, 
author={Xing Zhang and Zuxuan Wu and Zejia Weng and Huazhu Fu and Jingjing Chen and Yu-Gang Jiang and Larry Davis},
year={2021},
eprint={2105.02668},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Owner
Skye
Soul Programmer & Science Enthusiast
Skye
unofficial pytorch implementation of RefineGAN

RefineGAN unofficial pytorch implementation of RefineGAN (https://arxiv.org/abs/1709.00753) for CSMRI reconstruction, the official code using tensorpa

xinby17 5 Jul 21, 2022
ERISHA is a mulitilingual multispeaker expressive speech synthesis framework. It can transfer the expressivity to the speaker's voice for which no expressive speech corpus is available.

ERISHA: Multilingual Multispeaker Expressive Text-to-Speech Library ERISHA is a multilingual multispeaker expressive speech synthesis framework. It ca

Ajinkya Kulkarni 43 Nov 27, 2022
Simple implementation of OpenAI CLIP model in PyTorch.

It was in January of 2021 that OpenAI announced two new models: DALL-E and CLIP, both multi-modality models connecting texts and images in some way. In this article we are going to implement CLIP mod

Moein Shariatnia 226 Jan 05, 2023
Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement Official pytorch implementation of paper "Image-to-image Translation

364 Dec 14, 2022
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [PaddlePaddle Implementation] Homepage of paper: Paint Transformer: Fee

442 Dec 16, 2022
A C implementation for creating 2D voronoi diagrams

Branch OSX/Linux Windows master dev jc_voronoi A fast C/C++ header only implementation for creating 2D Voronoi diagrams from a point set Uses Fortune'

Mathias Westerdahl 481 Dec 29, 2022
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

Jacob Morris 38 Oct 21, 2022
Code for testing various M1 Chip benchmarks with TensorFlow.

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) aga

Daniel Bourke 348 Jan 04, 2023
PyTorch implementation of Densely Connected Time Delay Neural Network

Densely Connected Time Delay Neural Network PyTorch implementation of Densely Connected Time Delay Neural Network (D-TDNN) in our paper "Densely Conne

Ya-Qi Yu 64 Oct 11, 2022
Source code for paper "Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling", AAAI 2021

ATLOP Code for AAAI 2021 paper Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling. If you make use of this co

Wenxuan Zhou 146 Nov 29, 2022
Project page for End-to-end Recovery of Human Shape and Pose

End-to-end Recovery of Human Shape and Pose Angjoo Kanazawa, Michael J. Black, David W. Jacobs, Jitendra Malik CVPR 2018 Project Page Requirements Pyt

1.4k Dec 29, 2022
Create images and texts with the First Order Generative Adversarial Networks

First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority

Zalando Research 35 Dec 11, 2021
MILK: Machine Learning Toolkit

MILK: MACHINE LEARNING TOOLKIT Machine Learning in Python Milk is a machine learning toolkit in Python. Its focus is on supervised classification with

Luis Pedro Coelho 610 Dec 14, 2022
hipCaffe: the HIP port of Caffe

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by the Berkeley Vision and Learning Cent

ROCm Software Platform 126 Dec 05, 2022
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022
A Python package for performing pore network modeling of porous media

Overview of OpenPNM OpenPNM is a comprehensive framework for performing pore network simulations of porous materials. More Information For more detail

PMEAL 336 Dec 30, 2022
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
Visualizing lattice vibration information from phonon dispersion to atoms (For GPUMD)

Phonon-Vibration-Viewer (For GPUMD) Visualizing lattice vibration information from phonon dispersion for primitive atoms. In this tutorial, we will in

Liangting 6 Dec 10, 2022
R3Det based on mmdet 2.19.0

R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object Installation # install mmdetection first if you haven't installed it

SJTU-Thinklab-Det 38 Dec 15, 2022
TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data

A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, whi

KAIST Data Mining Lab 8 Dec 07, 2022