GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification

Overview

GalaXC

GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification

@InProceedings{Saini21,
	author       = {Saini, D. and Jain, A.K. and Dave, K. and Jiao, J. and Singh, A. and Zhang, R. and Varma, M.},
	title        = {GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification},
	booktitle    = {Proceedings of The Web Conference},
	month = "April",
	year = "2021",
	}

Setup GalaXC

git clone https://github.com/Extreme-classification/GalaXC.git
conda env create -f GalaXC/environment.yml
conda activate galaxc
pip install hnswlib
git clone https://github.com/kunaldahiya/pyxclib.git
cd pyxclib
python setup.py install
cd ../GalaXC

Dataset Structure

Your dataset should have the following structure:

DatasetName (e.g. LF-AmazonTitles-131K)
│   trn_X.txt   (text for trn documents, one text in each line)
|   tst_X.tst   (text for tst documents, one text in each line)
|   Y.txt       (text for labels, one text in each line)
│   trn_X_Y.txt (trn labels in spmat format)
|   tst_X_Y.txt (tst labels in spmat format)
|   filter_labels_test.txt (filter labels where label and test documents are same)
│
└───XXCondensedData (embeddings for tst, trn documents and labels, for benchmark datasets, XX=DX[Astec])
    │   trn_point_embs.npy (2D numpy matrix for trn document embeddings)
    │   tst_point_embs.npy (2D numpy matrix for tst document embeddings)
    |   label_embs.npy     (2D numpy matrix for label embeddings)

We have provided the DX(embeddings from Module 1 of Astec) embeddings for public benchmark datasets for ease of use. Got better(higher recall) embeddings from somewhere? Just plug the new ones and GalaXC will have better preformance, no need to make any code change! These files for LF-AmazonTitles-131K, LF-WikiSeeAlsoTitles-320K and LF-AmazonTitles-1.3M can be found here. Except the files in DXCondensedData, all other files are copy of the datasets from The Extreme Classification Repository.

Sample Runs

To reproduce the numbers on public benchmark datasets reported in the paper, the sample runs are

LF-AmazonTitles-131K

python -u -W ignore train_main.py --dataset /your/path/to/data/LF-AmazonTitles-131K --save-model 0  --devices cuda:0  --num-epochs 30  --num-HN-epochs 0  --batch-size 256  --lr 0.001  --attention-lr 0.001 --adjust-lr 5,10,15,20,25,28  --dlr-factor 0.5  --mpt 0  --restrict-edges-num -1  --restrict-edges-head-threshold 20  --num-random-samples 30000  --random-shuffle-nbrs 0  --fanouts 4,3,2  --num-HN-shortlist 500   --embedding-type DX  --run-type NR  --num-validation 25000  --validation-freq -1  --num-shortlist 500 --predict-ova 0  --A 0.6  --B 2.6

LF-WikiSeeAlsoTitles-320K

python -u -W ignore train_main.py --dataset /your/path/to/data/LF-WikiSeeAlsoTitles-320K --save-model 0  --devices cuda:0  --num-epochs 30  --num-HN-epochs 0  --batch-size 256  --lr 0.001  --attention-lr 0.05 --adjust-lr 5,10,15,20,25,28  --dlr-factor 0.5  --mpt 0  --restrict-edges-num -1  --restrict-edges-head-threshold 20  --num-random-samples 32000  --random-shuffle-nbrs 0  --fanouts 4,3,2  --num-HN-shortlist 500  --repo 1  --embedding-type DX --run-type NR  --num-validation 25000  --validation-freq -1  --num-shortlist 500  --predict-ova 0  --A 0.55  --B 1.5

LF-AmazonTitles-1.3M

python -u -W ignore train_main.py --dataset /your/path/to/data/LF-AmazonTitles-1.3M --save-model 0  --devices cuda:0  --num-epochs 24  --num-HN-epochs 15  --batch-size 512  --lr 0.001  --attention-lr 0.05 --adjust-lr 4,8,12,16,18,20,22  --dlr-factor 0.5  --mpt 0  --restrict-edges-num 5  --restrict-edges-head-threshold 20  --num-random-samples 100000  --random-shuffle-nbrs 1  --fanouts 3,3,3  --num-HN-shortlist 500   --embedding-type DX  --run-type NR  --num-validation 25000  --validation-freq -1  --num-shortlist 500 --predict-ova 0  --A 0.6  --B 2.6

YOU MAY ALSO LIKE

Owner
Extreme Classification
Extreme Classification
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Xuan Hieu Duong 7 Jan 12, 2022
DCA - Official Python implementation of Delaunay Component Analysis algorithm

Delaunay Component Analysis (DCA) Official Python implementation of the Delaunay

Petra Poklukar 9 Sep 06, 2022
PyTorch implementation of EfficientNetV2

[NEW!] Check out our latest work involution accepted to CVPR'21 that introduces a new neural operator, other than convolution and self-attention. PyTo

Duo Li 375 Jan 03, 2023
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
A module for solving and visualizing Schrödinger equation.

qmsolve This is an attempt at making a solid, easy to use solver, capable of solving and visualize the Schrödinger equation for multiple particles, an

506 Dec 28, 2022
Solution of Kaggle competition: Sartorius - Cell Instance Segmentation

Sartorius - Cell Instance Segmentation https://www.kaggle.com/c/sartorius-cell-instance-segmentation Environment setup Build docker image bash .dev_sc

68 Dec 09, 2022
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which reaches a median HNS of 205.7 after only 10M frames (the original Rainbow from Hessel et al. 2017 re

Dominik Schmidt 31 Dec 21, 2022
A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling"

SelfGNN A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling" paper, which will appear in Th

Zekarias Tilahun 24 Jun 21, 2022
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022
A torch implementation of "Pixel-Level Domain Transfer"

Pixel Level Domain Transfer A torch implementation of "Pixel-Level Domain Transfer". based on dcgan.torch. Dataset The dataset used is "LookBook", fro

Fei Xia 260 Sep 02, 2022
Minimal fastai code needed for working with pytorch

fastai_minima A mimal version of fastai with the barebones needed to work with Pytorch #all_slow Install pip install fastai_minima How to use This lib

Zachary Mueller 14 Oct 21, 2022
GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training @ KDD 2020

GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training Original implementation for paper GCC: Graph Contrastive Coding for Graph Neural N

THUDM 274 Dec 27, 2022
GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration

GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration Stefan Abi-Karam*, Yuqi He*, Rishov Sarkar*, Lakshmi Sathidevi, Zihang Qiao, Co

Sharc-Lab 19 Dec 15, 2022
Bagua is a flexible and performant distributed training algorithm development framework.

Bagua is a flexible and performant distributed training algorithm development framework.

786 Dec 17, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
PyTorch code for the paper: FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning

FeatMatch: Feature-Based Augmentation for Semi-Supervised Learning This is the PyTorch implementation of our paper: FeatMatch: Feature-Based Augmentat

43 Nov 19, 2022
Tf alloc - Simplication of GPU allocation for Tensorflow2

tf_alloc Simpliying GPU allocation for Tensorflow Developer: korkite (Junseo Ko)

Junseo Ko 3 Feb 10, 2022
ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs

(Comet-) ATOMIC 2020: On Symbolic and Neural Commonsense Knowledge Graphs Paper Jena D. Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sa

AI2 152 Dec 27, 2022
Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples / ICLR 2018

Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples This project is for the paper "Training Confidence-Calibrated Clas

168 Nov 29, 2022
Code for paper Adaptively Aligned Image Captioning via Adaptive Attention Time

Adaptively Aligned Image Captioning via Adaptive Attention Time This repository includes the implementation for Adaptively Aligned Image Captioning vi

Lun Huang 45 Aug 27, 2022