Official implementation of TMANet.

Related tags

Deep LearningTMANet
Overview

Temporal Memory Attention for Video Semantic Segmentation, arxiv

PWC PWC

Introduction

We propose a Temporal Memory Attention Network (TMANet) to adaptively integrate the long-range temporal relations over the video sequence based on the self-attention mechanism without exhaustive optical flow prediction. Our method achieves new state-of-the-art performances on two challenging video semantic segmentation datasets, particularly 80.3% mIoU on Cityscapes and 76.5% mIoU on CamVid with ResNet-50. (Accepted by ICIP2021)

If this codebase is helpful for you, please consider give me a star ⭐ 😊 .

image

Updates

2021/1: TMANet training and evaluation code released.

2021/6: Update README.md:

  • adding some Camvid dataset download links;
  • update 'camvid_video_process.py' script.

Usage

  • Install mmseg

    • Please refer to mmsegmentation to get installation guide.
    • This repository is based on mmseg-0.7.0 and pytorch 1.6.0.
  • Clone the repository

    git clone https://github.com/wanghao9610/TMANet.git
    cd TMANet
    pip install -e .
  • Prepare the datasets

    • Download Cityscapes dataset and Camvid dataset.

    • For Camvid dataset, we need to extract frames from downloaded videos according to the following steps:

      • Download the raw video from here, in which I provide a google drive link to download.
      • Put the downloaded raw video(e.g. 0016E5.MXF, 0006R0.MXF, 0005VD.MXF, 01TP_extract.avi) to ./data/camvid/raw .
      • Download the extracted images and labels from here and split.txt file from here, untar the tar.gz file to ./data/camvid , and we will get two subdirs "./data/camvid/images" (stores the images with annotations), and "./data/camvid/labels" (stores the ground truth for semantic segmentation). Reference the following shell command:
        cd TMANet
        cd ./data/camvid
        wget https://drive.google.com/file/d/1FcVdteDSx0iJfQYX2bxov0w_j-6J7plz/view?usp=sharing
        # or first download on your PC then upload to your server.
        tar -xf camvid.tar.gz 
      • Generate image_sequence dir frame by frame from the raw videos. Reference the following shell command:
        cd TMANet
        python tools/convert_datasets/camvid_video_process.py
    • For Cityscapes dataset, we need to request the download link of 'leftImg8bit_sequence_trainvaltest.zip' from Cityscapes dataset official webpage.

    • The converted/downloaded datasets store on ./data/camvid and ./data/cityscapes path.

      File structure of video semantic segmentation dataset is as followed.

      β”œβ”€β”€ data                                              β”œβ”€β”€ data                              
      β”‚   β”œβ”€β”€ cityscapes                                    β”‚   β”œβ”€β”€ camvid                        
      β”‚   β”‚   β”œβ”€β”€ gtFine                                    β”‚   β”‚   β”œβ”€β”€ images                    
      β”‚   β”‚   β”‚   β”œβ”€β”€ train                                 β”‚   β”‚   β”‚   β”œβ”€β”€ xxx{img_suffix}       
      β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ xxx{img_suffix}                   β”‚   β”‚   β”‚   β”œβ”€β”€ yyy{img_suffix}       
      β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ yyy{img_suffix}                   β”‚   β”‚   β”‚   β”œβ”€β”€ zzz{img_suffix}       
      β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ zzz{img_suffix}                   β”‚   β”‚   β”œβ”€β”€ annotations               
      β”‚   β”‚   β”‚   β”œβ”€β”€ val                                   β”‚   β”‚   β”‚   β”œβ”€β”€ train.txt             
      β”‚   β”‚   β”œβ”€β”€ leftImg8bit                               β”‚   β”‚   β”‚   β”œβ”€β”€ val.txt               
      β”‚   β”‚   β”‚   β”œβ”€β”€ train                                 β”‚   β”‚   β”‚   β”œβ”€β”€ test.txt              
      β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ xxx{seg_map_suffix}               β”‚   β”‚   β”œβ”€β”€ labels                    
      β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ yyy{seg_map_suffix}               β”‚   β”‚   β”‚   β”œβ”€β”€ xxx{seg_map_suffix}   
      β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ zzz{seg_map_suffix}               β”‚   β”‚   β”‚   β”œβ”€β”€ yyy{seg_map_suffix}   
      β”‚   β”‚   β”‚   β”œβ”€β”€ val                                   β”‚   β”‚   β”‚   β”œβ”€β”€ zzz{seg_map_suffix}   
      β”‚   β”‚   β”œβ”€β”€ leftImg8bit_sequence                      β”‚   β”‚   β”œβ”€β”€ image_sequence            
      β”‚   β”‚   β”‚   β”œβ”€β”€ train                                 β”‚   β”‚   β”‚   β”œβ”€β”€ xxx{sequence_suffix}  
      β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ xxx{sequence_suffix}              β”‚   β”‚   β”‚   β”œβ”€β”€ yyy{sequence_suffix}  
      β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ yyy{sequence_suffix}              β”‚   β”‚   β”‚   β”œβ”€β”€ zzz{sequence_suffix}  
      β”‚   β”‚   β”‚   β”‚   β”œβ”€β”€ zzz{sequence_suffix}              
      β”‚   β”‚   β”‚   β”œβ”€β”€ val                                   
      
  • Evaluation

    • Download the trained models for Cityscapes and Camvid. And put them on ./work_dirs/{config_file}
    • Run the following command(on Cityscapes):
    sh eval.sh configs/video/cityscapes/tmanet_r50-d8_769x769_80k_cityscapes_video.py
  • Training

    • Please download the pretrained ResNet-50 model, and put it on ./init_models .
    • Run the following command(on Cityscapes):
    sh train.sh configs/video/cityscapes/tmanet_r50-d8_769x769_80k_cityscapes_video.py

    Note: the above evaluation and training shell commands execute on Cityscapes, if you want to execute evaluation or training on Camvid, please replace the config file on the shell command with the config file of Camvid.

Citation

If you find TMANet is useful in your research, please consider citing:

@misc{wang2021temporal,
    title={Temporal Memory Attention for Video Semantic Segmentation}, 
    author={Hao Wang and Weining Wang and Jing Liu},
    year={2021},
    eprint={2102.08643},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

Acknowledgement

Thanks mmsegmentation contribution to the community!

Owner
wanghao
wanghao
Collection of NLP model explanations and accompanying analysis tools

Thermostat is a large collection of NLP model explanations and accompanying analysis tools. Combines explainability methods from the captum library wi

126 Nov 22, 2022
Fast and simple implementation of RL algorithms, designed to run fully on GPU.

RSL RL Fast and simple implementation of RL algorithms, designed to run fully on GPU. This code is an evolution of rl-pytorch provided with NVIDIA's I

Robotic Systems Lab - Legged Robotics at ETH ZΓΌrich 68 Dec 29, 2022
MetaDrive: Composing Diverse Scenarios for Generalizable Reinforcement Learning

MetaDrive: Composing Diverse Driving Scenarios for Generalizable RL [ Documentation | Demo Video ] MetaDrive is a driving simulator with the following

DeciForce: Crossroads of Machine Perception and Autonomy 276 Jan 04, 2023
My implementation of transformers related papers for computer vision in pytorch

vision_transformers This is my personnal repo to implement new transofrmers based and other computer vision DL models I am currenlty working without a

samsja 1 Nov 10, 2021
Active learning for Mask R-CNN in Detectron2

MaskAL - Active learning for Mask R-CNN in Detectron2 Summary MaskAL is an active learning framework that automatically selects the most-informative i

49 Dec 20, 2022
A custom DeepStack model that has been trained detecting ONLY the USPS logo

This repository provides a custom DeepStack model that has been trained detecting ONLY the USPS logo. This was created after I discovered that the Deepstack OpenLogo custom model I was using did not

Stephen Stratoti 9 Dec 27, 2022
Drone detection using YOLOv5

This drone detection system uses YOLOv5 which is a family of object detection architectures and we have trained the model on Drone Dataset. Overview I

Tushar Sarkar 27 Dec 20, 2022
Anonymous implementation of KSL

k-Step Latent (KSL) Implementation of k-Step Latent (KSL) in PyTorch. Representation Learning for Data-Efficient Reinforcement Learning [Paper] Code i

1 Nov 10, 2021
Source Code for DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances (https://arxiv.org/pdf/2012.01775.pdf)

DialogBERT This is a PyTorch implementation of the DialogBERT model described in DialogBERT: Neural Response Generation via Hierarchical BERT with Dis

Xiaodong Gu 67 Jan 06, 2023
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
converts nominal survey data into a numerical value based on a dictionary lookup.

SWAP RATE Converts nominal survey data into a numerical values based on a dictionary lookup. It allows the user to switch nominal scale data from text

Jake Rhodes 1 Jan 18, 2022
Make Watson Assistant send messages to your Discord Server

Make Watson Assistant send messages to your Discord Server Prerequisites Sign up for an IBM Cloud account. Fill in the required information and press

1 Jan 10, 2022
SNE-RoadSeg in PyTorch, ECCV 2020

SNE-RoadSeg Introduction This is the official PyTorch implementation of SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentati

242 Dec 20, 2022
MohammadReza Sharifi 27 Dec 13, 2022
A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualization

Website, Tutorials, and Docs    Uncertainty Toolbox A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualizatio

Uncertainty Toolbox 1.4k Dec 28, 2022
A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising (CVPR 2020 Oral & TPAMI 2021)

ELD The implementation of CVPR 2020 (Oral) paper "A Physics-based Noise Formation Model for Extreme Low-light Raw Denoising" and its journal (TPAMI) v

Kaixuan Wei 359 Jan 01, 2023
Dilated Convolution with Learnable Spacings PyTorch

Dilated-Convolution-with-Learnable-Spacings-PyTorch Ismail Khalfaoui Hassani Dilated Convolution with Learnable Spacings (abbreviated to DCLS) is a no

15 Dec 09, 2022
Matching python environment code for Lux AI 2021 Kaggle competition, and a gym interface for RL models.

Lux AI 2021 python game engine and gym This is a replica of the Lux AI 2021 game ported directly over to python. It also sets up a classic Reinforceme

Geoff McDonald 74 Nov 03, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
ACV is a python library that provides explanations for any machine learning model or data.

ACV is a python library that provides explanations for any machine learning model or data. It gives local rule-based explanations for any model or data and different Shapley Values for tree-based mod

Salim Amoukou 85 Dec 27, 2022