Trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI

Overview

lunar-lander-logo

Introduction

This script trains an agent with stochastic policy gradient ascent to solve the Lunar Lander challenge from OpenAI.

In order to run this script, NumPy, the OpenAI Gym toolkit, and PyTorch will need to be installed.

Each step through the Lunar Lander environment takes the general form:

state, reward, done, info = env.step(action)

and the goal is for the agent to take actions that maximize the cumulative reward achieved for the episode's duration. In this specific environment, the state space is 8-dimensional and continuous, while the action space consists of four discrete options:

  • do nothing,
  • fire the left orientation engine,
  • fire the main engine,
  • and fire the right orientation engine.

In order to "solve" the environment, the agent needs to complete the episode with at least 200 points. To learn more about how the agent receives rewards, see here.

Algorithm

Since the agent can only take one of four actions, a, at each time step t, a natural choice of policy would yield probabilities of each action as its output, given an input state, s. Namely, the policy, πθ(a|s), chosen for the agent is a neural network function approximator, designed to more closely approximate the optimal policy π*(a|s) of the agent as it trains over more and more episodes. Here, θ represents the parameters of the neural network that are initially randomized but improve over time to produce more optimal actions, meaning those actions that lead to more cumulative reward over time. Each hidden layer of the neural network uses a ReLU activation. The last layer is a softmax layer of four neurons, meaning each neuron outputs the probability that its corresponding action will be selected.

neural-network

Now that the agent has a stochastic mechanism to select output actions given an input state, it begs the question as to how the policy itself improves over episodes. At the end of each episode, the reward, Gt, due to selecting a specific action, at, at time t during the episode can be expressed as follows:

Gt = rt + (γ)rt+1 + (γ2)rt+2 + ...

where rt is the immediate reward and all remaining terms form the discounted sum of future rewards with discount factor 0 < γ < 1.

Then, the goal is to change the parameters to increase the expectation of future rewards. By taking advantage of likelihood ratios, a gradient estimator of the form below can be used:

grad = Et [ ∇θ log( πθ( at | st ) ) Gt ]

where the advantage function is given by the total reward Gt produced by the action at. Updating the parameters in the direction of the gradient has the net effect of increasing the likelihood of taking actions that were eventually rewarded and decreasing the likelihood of taking actions that were eventually penalized. This is possible because Gt takes into account all the future rewards received as well as the immediate reward.

Results

Solving the Lunar Lander challenge requires safely landing the spacecraft between two flag posts while consuming limited fuel. The agent's ability to do this was quite abysmal in the beginning.

failure...'

After training the agent overnight on a GPU, it could gracefully complete the challenge with ease!

success!

Below, the performance of the agent over 214,000 episodes is documented. The light-blue line indicates individual episodic performance, and the black line is a 100-period moving average of performance. The red line marks the 200 point success threshold.

training-results

It took a little over 17,000 episodes before the agent completed the challenge with a total reward of at least 200 points. After around 25,000 episodes, its average performance began to stabilize, yet, it should be noted that there remained a high amount of variance between individual episodes. In particular, even within the last 15,000 episodes of training, the agent failed roughly 5% of the time. Although the agent could easily conquer the challenge, it occasionally could not prevent making decisions that would eventually lead to disastrous consequences.

Discussion

One caveat with this specific implementation is that it only works with a discrete action space. However, it is possible to adapt the same algorithm to work with a continuous action space. In order to do so, the softmax output layer would have to transform into a sigmoid or tanh layer, nulling the idea that the output layer corresponds to probabilities. Each output neuron would now correspond to the mean, μ, of the (assumed) Gaussian distribution to which each action belongs. In essence, the distributional means themselves would be functions of the input state.

The training process would then consist of updating parameters such that the means shift to favor actions that result in eventual rewards and disfavor actions that are eventually penalized. While it is possible to adapt the algorithm to support continuous action spaces, it has been noted to have relatively poor or limited performance in practice. In actual scenarios involving continuous action spaces, it would almost certainly be preferable to use DDPG, PPO, or a similar algorithm.

References

License

All files in the repository are under the MIT license.

Owner
Momin Haider
Momin Haider
A Marvelous ChatBot implement using PyTorch.

PyTorch Marvelous ChatBot [Update] it's 2019 now, previously model can not catch up state-of-art now. So we just move towards the future a transformer

JinTian 223 Oct 18, 2022
Sample and Computation Redistribution for Efficient Face Detection

Introduction SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv. Performance Precision, flops and infer ti

Sajjad Aemmi 13 Mar 05, 2022
TensorFlow port of PyTorch Image Models (timm) - image models with pretrained weights.

TensorFlow-Image-Models Introduction Usage Models Profiling License Introduction TensorfFlow-Image-Models (tfimm) is a collection of image models with

Martins Bruveris 227 Dec 20, 2022
Principled Detection of Out-of-Distribution Examples in Neural Networks

ODIN: Out-of-Distribution Detector for Neural Networks This is a PyTorch implementation for detecting out-of-distribution examples in neural networks.

189 Nov 29, 2022
Algorithms for outlier, adversarial and drift detection

Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline d

Seldon 1.6k Dec 31, 2022
Multi-Output Gaussian Process Toolkit

Multi-Output Gaussian Process Toolkit Paper - API Documentation - Tutorials & Examples The Multi-Output Gaussian Process Toolkit is a Python toolkit f

GAMES 113 Nov 25, 2022
Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners

DART Implementation for ICLR2022 paper Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners. Environment

ZJUNLP 83 Dec 27, 2022
Keras Image Embeddings using Contrastive Loss

Image to Embedding projection in vector space. Implementation in keras and tensorflow of batch all triplet loss for one-shot/few-shot learning.

Shravan Anand K 5 Mar 21, 2022
Official code for UnICORNN (ICML 2021)

UnICORNN (Undamped Independent Controlled Oscillatory RNN) [ICML 2021] This repository contains the implementation to reproduce the numerical experime

Konstantin Rusch 21 Dec 22, 2022
Artificial Intelligence playing minesweeper 🤖

AI playing Minesweeper ✨ Minesweeper is a single-player puzzle video game. The objective of the game is to clear a rectangular board containing hidden

Vaibhaw 8 Oct 17, 2022
Generate Contextual Directory Wordlist For Target Org

PathPermutor Generate Contextual Directory Wordlist For Target Org This script generates contextual wordlist for any target org based on the set of UR

8 Jun 23, 2021
Official PyTorch implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation

U-GAT-IT — Official PyTorch Implementation : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Imag

Hyeonwoo Kang 2.4k Jan 04, 2023
Trading environnement for RL agents, backtesting and training.

TradzQAI Trading environnement for RL agents, backtesting and training. Live session with coinbasepro-python is finaly arrived ! Available sessions: L

Tony Denion 164 Oct 30, 2022
These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations"

Few-shot-NLEs These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations". You can find the smal

Yordan Yordanov 0 Oct 21, 2022
The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation

BiMix The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation arxiv Framework: visualization results: Requiremen

stanley 18 Sep 18, 2022
Cancer metastasis detection with neural conditional random field (NCRF)

NCRF Prerequisites Data Whole slide images Annotations Patch images Model Training Testing Tissue mask Probability map Tumor localization FROC evaluat

Baidu Research 731 Jan 01, 2023
Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio"

Success Predictor Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio". B

Rodrigo Nazar Meier 4 Mar 17, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Varun Nair 37 Dec 30, 2022
Source code for the BMVC-2021 paper "SimReg: Regression as a Simple Yet Effective Tool for Self-supervised Knowledge Distillation".

SimReg: A Simple Regression Based Framework for Self-supervised Knowledge Distillation Source code for the paper "SimReg: Regression as a Simple Yet E

9 Oct 15, 2022