The VarCNN is an Convolution Neural Network based approach to automate Video Assistant Referee in football.

Related tags

Deep LearningVarCnn
Overview

VarCnn: The Deep Learning Powered VAR

Detailed arricle on the project using the above data can be fount at https://aamir07.medium.com/var-cnn-football-foul-or-clean-tackle-4ff6629c83db

Web App Hosted at https://share.streamlit.io/aamir09/varcnnapp/main/app.py

Tutorial on Youtube: https://www.youtube.com/watch?v=GXW7YWE3vxY

Football is the most followed sport in the world, played in more than 200M+ countries. The sport has developed a lot in the recent century and so has the technology involved in the game. The Virtual Assistant Referee (VAR) is one of them and has impacted the game to a large extent. The role of VAR is simple yet complex; to intervene in between the play when the referees make a wrong decision or cannot make one. A specific scenario arises when they have to decide if a sliding tackle inside the box has resulted in a clean tackle or penalty for the opposition team. The technology is there to watch the moment at which tackle took place on repeat but the decisions are still made by humans and hence can be biased. I propose a CNN based foul detection which is theoretically based on the principle of the initial point of contact.

Data

Collecting the data has been a ponderous task, there are no open-source resources for the kind of data of any league. The only available sources are the video clips of the European matches and compilations on youtube of tackling and fouls. A small chunk of data is also acquired from the paper Soccer Event Detection Using Deep Learning.

image

Model Architecture

image

Results & Inferences

Results: Training Accuracy: 76.6% Validation Accuracy: 78%

image

image

Infrences

image

image

image

image

The above inference is a case where the model predicted the classes correctly. The focus has been on player postures and the initial contacts. In Figure 4, you can clearly see it takes into account both the players postures and initial point of contact. Figure 3, shows that the initial point of contact with the player as well the ball of the opposition player is taken into account for the decision making.

image

In Figure 5, the original image corresponds to a foul but is classified as a clean tackle, observe that the initial point of contact is not considered at all, some focus is on the postures but mainly on the green grass. This is pretty common in the images classified in the wrong classes. This issue can be resolved if more data is available for both classes and the quality of data improves.

Real-Time Inference Example can be seen in the article.

Future Work

The future work is improving the model by increasing the volume of the data as well as the variety of fouls. In this project, we have studied sliding tackles. Once a model with better accuracy is achieved, it may become the next advancement in football’s decision making.

The data can be used freely but if you do use it mention Aamir Ahmad Ansari in the citations or credits with link to this repository.

Owner
Aamir
Software Developer / AI and ML Expert
Aamir
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
Empowering journalists and whistleblowers

Onymochat Empowering journalists and whistleblowers Onymochat is an end-to-end encrypted, decentralized, anonymous chat application. You can also host

Samrat Dutta 19 Sep 02, 2022
Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

SSL_OSC Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

zaixizhang 2 May 14, 2022
RLMeta is a light-weight flexible framework for Distributed Reinforcement Learning Research.

RLMeta rlmeta - a flexible lightweight research framework for Distributed Reinforcement Learning based on PyTorch and moolib Installation To build fro

Meta Research 281 Dec 22, 2022
Let's Git - Versionsverwaltung & Open Source Hausaufgabe

Let's Git - Versionsverwaltung & Open Source Hausaufgabe Herzlich Willkommen zu dieser Hausaufgabe für unseren MOOC: Let's Git! Wir hoffen, dass Du vi

1 Dec 13, 2021
BMVC 2021: This is the github repository for "Few Shot Temporal Action Localization using Query Adaptive Transformers" accepted in British Machine Vision Conference (BMVC) 2021, Virtual

FS-QAT: Few Shot Temporal Action Localization using Query Adaptive Transformer Accepted as Poster in BMVC 2021 This is an official implementation in P

Sauradip Nag 14 Dec 09, 2022
Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Table of Content Introduction Datasets Getting Started Requirements Usage Example Training & Evaluation CPM: Color-Pattern Makeup Transfer CPM is a ho

VinAI Research 248 Dec 13, 2022
Official PyTorch implementation of "ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows"

ArtFlow Official PyTorch implementation of the paper: ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows Jie An*, Siyu Huang*, Yibing

123 Dec 27, 2022
Code repository for the paper "Tracking People with 3D Representations"

Tracking People with 3D Representations Code repository for the paper "Tracking People with 3D Representations" (paper link) (project site). Jathushan

Jathushan Rajasegaran 77 Dec 03, 2022
Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition

Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition | paper | dataset | pretrained detection model | Authors: Yi-Chang Che

Yi-Chang Chen 1 Aug 23, 2022
Learning Versatile Neural Architectures by Propagating Network Codes

Learning Versatile Neural Architectures by Propagating Network Codes Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang,

Mingyu Ding 36 Dec 06, 2022
Gesture Volume Control v.2

Gesture volume control v.2 In this project I am going to learn how to use Gesture Control to change the volume of a computer. I first look into hand t

Pavel Dat 23 Dec 26, 2022
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

CaptainHook 48 Dec 15, 2022
GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training @ KDD 2020

GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training Original implementation for paper GCC: Graph Contrastive Coding for Graph Neural N

THUDM 274 Dec 27, 2022
(3DV 2021 Oral) Filtering by Cluster Consistency for Large-Scale Multi-Image Matching

Scalable Cluster-Consistency Statistics for Robust Multi-Object Matching (3DV 2021 Oral Presentation) Filtering by Cluster Consistency (FCC) is a very

Yunpeng Shi 11 Sep 28, 2022
PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmentation

Self-Supervised Anomaly Segmentation Intorduction This is a PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmen

WuFan 2 Jan 27, 2022
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

Rishikesh (ऋषिकेश) 55 Dec 26, 2022
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

201 Dec 29, 2022