A PyTorch re-implementation of Neural Radiance Fields

Overview

nerf-pytorch

A PyTorch re-implementation

Project | Video | Paper

Open Tiny-NeRF in Colab

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
Ben Mildenhall*1, Pratul P. Srinivasan*1, Matthew Tancik*1, Jonathan T. Barron2, Ravi Ramamoorthi3, Ren Ng1
1UC Berkeley, 2Google Research, 3UC San Diego
*denotes equal contribution

A PyTorch re-implementation of Neural Radiance Fields.

Speed matters!

The current implementation is blazing fast! (~5-9x faster than the original release, ~2-4x faster than this concurrent pytorch implementation)

What's the secret sauce behind this speedup?

Multiple aspects. Besides obvious enhancements such as data caching, effective memory management, etc. I drilled down through the entire NeRF codebase, and reduced data transfer b/w CPU and GPU, vectorized code where possible, and used efficient variants of pytorch ops (wrote some where unavailable). But for these changes, everything else is a faithful reproduction of the NeRF technique we all admire :)

Sample results from the repo

On synthetic data

On real data

Tiny-NeRF on Google Colab

The NeRF code release has an accompanying Colab notebook, that showcases training a feature-limited version of NeRF on a "tiny" scene. It's equivalent PyTorch notebook can be found at the following URL:

https://colab.research.google.com/drive/1rO8xo0TemN67d4mTpakrKrLp03b9bgCX

What is a NeRF?

A neural radiance field is a simple fully connected network (weights are ~5MB) trained to reproduce input views of a single scene using a rendering loss. The network directly maps from spatial location and viewing direction (5D input) to color and opacity (4D output), acting as the "volume" so we can use volume rendering to differentiably render new views.

Optimizing a NeRF takes between a few hours and a day or two (depending on resolution) and only requires a single GPU. Rendering an image from an optimized NeRF takes somewhere between less than a second and ~30 seconds, again depending on resolution.

How to train your NeRF super-quickly!

To train a "full" NeRF model (i.e., using 3D coordinates as well as ray directions, and the hierarchical sampling procedure), first setup dependencies.

Option 1: Using pip

In a new conda or virtualenv environment, run

pip install -r requirements.txt

Option 2: Using conda

Use the provided environment.yml file to install the dependencies into an environment named nerf (edit the environment.yml if you wish to change the name of the conda environment).

conda env create
conda activate nerf

Run training!

Once everything is setup, to run experiments, first edit config/lego.yml to specify your own parameters.

The training script can be invoked by running

python train_nerf.py --config config/lego.yml

Optional: Resume training from a checkpoint

Optionally, if resuming training from a previous checkpoint, run

python train_nerf.py --config config/lego.yml --load-checkpoint path/to/checkpoint.ckpt

Optional: Cache rays from the dataset

An optional, yet simple preprocessing step of caching rays from the dataset results in substantial compute time savings (reduced carbon footprint, yay!), especially when running multiple experiments. It's super-simple: run

python cache_dataset.py --datapath cache/nerf_synthetic/lego/ --halfres False --savedir cache/legocache/legofull --num-random-rays 8192 --num-variations 50

This samples 8192 rays per image from the lego dataset. Each image is 800 x 800 (since halfres is set to False), and 500 such random samples (8192 rays each) are drawn per image. The script takes about 10 minutes to run, but the good thing is, this needs to be run only once per dataset.

NOTE: Do NOT forget to update the cachedir option (under dataset) in your config (.yml) file!

(Full) NeRF on Google Colab

A Colab notebook for the full NeRF model (albeit on low-resolution data) can be accessed here.

Render fun videos (from a pretrained model)

Once you've trained your NeRF, it's time to use that to render the scene. Use the eval_nerf.py script to do that. For the lego-lowres example, this would be

python eval_nerf.py --config pretrained/lego-lowres/config.yml --checkpoint pretrained/lego-lowres/checkpoint199999.ckpt --savedir cache/rendered/lego-lowres

You can create a gif out of the saved images, for instance, by using Imagemagick.

convert cache/rendered/lego-lowres/*.png cache/rendered/lego-lowres.gif

This should give you a gif like this.

A note on reproducibility

All said, this is not an official code release, and is instead a reproduction from the original code (released by the authors here).

The code is thoroughly tested (to the best of my abilities) to match the original implementation (and be much faster)! In particular, I have ensured that

  • Every individual module exactly (numerically) matches that of the TensorFlow implementation. This Colab notebook has all the tests, matching op for op (but is very scratchy to look at)!
  • Training works as expected (for Lego and LLFF scenes).

The organization of code WILL change around a lot, because I'm actively experimenting with this.

Pretrained models: Pretrained models for the following scenes are available in the pretrained directory (all of them are currently lowres). I will continue adding models herein.

# Synthetic (Blender) scenes
chair
drums
hotdog
lego
materials
ship

# Real (LLFF) scenes
fern

Contributing / Issues?

Feel free to raise GitHub issues if you find anything concerning. Pull requests adding additional features are welcome too.

LICENSE

nerf-pytorch is available under the MIT License. For more details see: LICENSE and ACKNOWLEDGEMENTS.

Misc

Also, a shoutout to yenchenlin for his cool PyTorch implementation, whose volume rendering function replaced mine (my initial impl was inefficient in comparison).

Owner
Krishna Murthy
PhD candidate @mila-udem @montrealrobotics. Blending robotics and computer vision with deep learning.
Krishna Murthy
Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit

streamlit-manim Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit Installation I had to install pango with sudo apt-get

Adrien Treuille 6 Aug 03, 2022
网络协议2天集训

网络协议2天集训 抓包工具安装 Wireshark wireshark下载地址 Tcpdump CentOS yum install tcpdump -y Ubuntu apt-get install tcpdump -y k8s抓包测试环境 查看虚拟网卡veth pair 查看

120 Dec 12, 2022
Code for the ICCV'21 paper "Context-aware Scene Graph Generation with Seq2Seq Transformers"

ICCV'21 Context-aware Scene Graph Generation with Seq2Seq Transformers Authors: Yichao Lu*, Himanshu Rai*, Cheng Chang*, Boris Knyazev†, Guangwei Yu,

Layer6 Labs 37 Dec 18, 2022
Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization

Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization 0. Environment Environment: python 3.6 and cuda 10

Haitao Yang 62 Dec 30, 2022
From this paper "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection"

SESNet for remote sensing image change detection It is the implementation of the paper: "SESNet: A Semantically Enhanced Siamese Network for Remote Se

1 May 24, 2022
Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Ibai Gorordo 42 Oct 07, 2022
Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022

PGNet Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022, CVPR 2022 (arXiv 2204.05041) Abstract Recent salient objec

CVTEAM 109 Dec 05, 2022
BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine Learning

BEAS Blockchain Enabled Asynchronous and Secure Federated Machine Learning Default Network Configuration: The default application uses the HyperLedger

Harpreet Virk 11 Nov 20, 2022
💊 A 3D Generative Model for Structure-Based Drug Design (NeurIPS 2021)

A 3D Generative Model for Structure-Based Drug Design Coming soon... Citation @inproceedings{luo2021sbdd, title={A 3D Generative Model for Structu

Shitong Luo 118 Jan 05, 2023
Face Recognition Attendance Project

Face-Recognition-Attendance-Project In This Project You will learn how to mark attendance using face recognition, Hello Guys This is Gautam Kumar, Thi

Gautam Kumar 1 Dec 03, 2022
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

NPMs: Neural Parametric Models Project Page | Paper | ArXiv | Video NPMs: Neural Parametric Models for 3D Deformable Shapes Pablo Palafox, Aljaz Bozic

PabloPalafox 109 Nov 22, 2022
Official Pytorch implementation of the paper: "Locally Shifted Attention With Early Global Integration"

Locally-Shifted-Attention-With-Early-Global-Integration Pretrained models You can download all the models from here. Training Imagenet python -m torch

Shelly Sheynin 14 Apr 15, 2022
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

ood-text-emnlp Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them" Files fine_tune.py is used to finetune the GPT-2 mo

Udit Arora 19 Oct 28, 2022
Sparse Physics-based and Interpretable Neural Networks

Sparse Physics-based and Interpretable Neural Networks for PDEs This repository contains the code and manuscript for research done on Sparse Physics-b

28 Jan 03, 2023
Codes of the paper Deformable Butterfly: A Highly Structured and Sparse Linear Transform.

Deformable Butterfly: A Highly Structured and Sparse Linear Transform DeBut Advantages DeBut generalizes the square power of two butterfly factor matr

Rui LIN 8 Jun 10, 2022
Automatic Image Background Subtraction

Automatic Image Background Subtraction This repo contains set of scripts for automatic one-shot image background subtraction task using the following

Oleg Sémery 6 Dec 05, 2022
Code To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment.

COLIEE 2021 - task 2: Legal Case Entailment This repository contains the code to reproduce NeuralMind's submissions to COLIEE 2021 presented in the pa

NeuralMind 13 Dec 16, 2022
Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data"

Code and Datasets from the paper "Self-supervised contrastive learning for volcanic unrest detection from InSAR data" You can download the pretrained

Bountos Nikos 3 May 07, 2022
A tf.keras implementation of Facebook AI's MadGrad optimization algorithm

MADGRAD Optimization Algorithm For Tensorflow This package implements the MadGrad Algorithm proposed in Adaptivity without Compromise: A Momentumized,

20 Aug 18, 2022
机器学习、深度学习、自然语言处理等人工智能基础知识总结。

说明 机器学习、深度学习、自然语言处理基础知识总结。 目前主要参考李航老师的《统计学习方法》一书,也有一些内容例如XGBoost、聚类、深度学习相关内容、NLP相关内容等是书中未提及的。

Peter 445 Dec 12, 2022