Real-time 3D multi-person detection made easy with OpenPose and the ZED

Overview

OpenPose ZED

What to expect

This sample show how to simply use the ZED with OpenPose, the deep learning framework that detects the skeleton from a single 2D image. The 3D information provided by the ZED is used to place the joints in space. The output is a 3D view of the skeletons.

Installation

Openpose

This sample can be put in the folder examples/user_code/ OR preferably, compile and install openpose with the cmake and compile this anywhere

The installation process is very easy using cmake.

Clone the repository :

    git clone https://github.com/CMU-Perceptual-Computing-Lab/openpose/

Build and install it :

    cd openpose
    mkdir build
    cmake .. # This can take a while
    make -j8
    sudo make install

ZED SDK

The ZED SDK is also a requirement for this sample, download the ZED SDK and follows the instructions.

It requires ZED SDK 2.4 for the floor plane detection but can be easily disabled to use an older ZED SDK version.

Build the program

Open a terminal in the sample directory and execute the following command:

    mkdir build
    cd build
    cmake ..
    make -j8

We then need to make a symbolic link to the models folder to be able to loads it

    ln -s ~/path/to/openpose/models "$(pwd)"

A models folder should now be in the build folder

Run the program

  • Navigate to the build directory and launch the executable

  • Or open a terminal in the build directory and run the sample :

      ./zed_openpose
    

Options

Beyond the openpose option, several more were added, mainly:

Option Description
svo_path SVO file path to load instead of opening the ZED
ogl_ptcloud Boolean to show the point cloud in the OpenGL window
estimate_floor_plane Boolean to align the point cloud on the floor plane
opencv_display Enable the 2D View of OpenPose output
depth_display Display the depth map with OpenCV

Example :

    ./zed_openpose -net_resolution 320x240 -ogl_ptcloud true -svo_path ~/foo/bar.svo

Notes

  • This sample is a proof of concept and might not be robust to every situation, especially to detect the floor plane if the environment is cluttered.
  • This sample was only tested on Linux but should be easy to run on Windows.
  • This sample requires both Openpose and the ZED SDK which are heavily relying on the GPU.
  • Only the body keypoints are currently used, however we could imagine doing the same for hand and facial keypoints, though the precision required might be a limiting factor.
Owner
blanktec
blanktec
Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors.

PairRE Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors. This implementation of PairRE for Open Graph Benchmak datasets (

Alipay 65 Dec 19, 2022
Portfolio asset allocation strategies: from Markowitz to RNNs

Portfolio asset allocation strategies: from Markowitz to RNNs Research project to explore different approaches for optimal portfolio allocation starti

Luigi Filippo Chiara 1 Feb 05, 2022
Official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".

One-Shot Voice Conversion with Weight Adaptive Instance Normalization By Shengjie Huang, Yanyan Xu*, Dengfeng Ke*, Mingjie Chen, Thomas Hain. This rep

31 Dec 07, 2022
NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

OptiPrompt This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall. We propose OptiPrompt, a simple

Princeton Natural Language Processing 150 Dec 20, 2022
This is an implementation for the CVPR2020 paper "Learning Invariant Representation for Unsupervised Image Restoration"

Learning Invariant Representation for Unsupervised Image Restoration (CVPR 2020) Introduction This is an implementation for the paper "Learning Invari

GarField 88 Nov 07, 2022
Semantic Segmentation Architectures Implemented in PyTorch

pytorch-semseg Semantic Segmentation Algorithms Implemented in PyTorch This repository aims at mirroring popular semantic segmentation architectures i

Meet Shah 3.3k Dec 29, 2022
training script for space time memory network

Trainig Script for Space Time Memory Network This codebase implemented training code for Space Time Memory Network with some cyclic features. Requirem

Yuxi Li 100 Dec 20, 2022
piSTAR Lab is a modular platform built to make AI experimentation accessible and fun. (pistar.ai)

piSTAR Lab WARNING: This is an early release. Overview piSTAR Lab is a modular deep reinforcement learning platform built to make AI experimentation a

piSTAR Lab 0 Aug 01, 2022
Multi Agent Path Finding Algorithms

MATP-solver Simulator collision check path step random initial states or given states Traditional method Seperate A* algorithem Confict-based Search S

30 Dec 12, 2022
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

RAVE: Realtime Audio Variational autoEncoder Official implementation of RAVE: A variational autoencoder for fast and high-quality neural audio synthes

ACIDS 587 Jan 01, 2023
CONditionals for Ordinal Regression and classification in tensorflow

Condor Ordinal regression in Tensorflow Keras Tensorflow Keras implementation of CONDOR Ordinal Regression (aka ordinal classification) by Garrett Jen

9 Jul 31, 2022
This repository contains code to train and render Mixture of Volumetric Primitives (MVP) models

Mixture of Volumetric Primitives -- Training and Evaluation This repository contains code to train and render Mixture of Volumetric Primitives (MVP) m

Meta Research 125 Dec 29, 2022
A tensorflow implementation of GCN-LPA

GCN-LPA This repository is the implementation of GCN-LPA (arXiv): Unifying Graph Convolutional Neural Networks and Label Propagation Hongwei Wang, Jur

Hongwei Wang 83 Nov 28, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Equivariant Imaging: Learning Beyond the Range Space

[Project] Equivariant Imaging: Learning Beyond the Range Space Project about the

Georges Le Bellier 3 Feb 06, 2022
A collection of resources on GAN Inversion.

This repo is a collection of resources on GAN inversion, as a supplement for our survey

SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
PyTorch implementation of federated learning framework based on the acceleration of global momentum

Federated Learning with Acceleration of Global Momentum PyTorch implementation of federated learning framework based on the acceleration of global mom

0 Dec 23, 2021
Optimize Trading Strategies Using Freqtrade

Optimize trading strategy using Freqtrade Short demo on building, testing and optimizing a trading strategy using Freqtrade. The DevBootstrap YouTube

DevBootstrap 139 Jan 01, 2023
Codebase for "ProtoAttend: Attention-Based Prototypical Learning."

Codebase for "ProtoAttend: Attention-Based Prototypical Learning." Authors: Sercan O. Arik and Tomas Pfister Paper: Sercan O. Arik and Tomas Pfister,

47 2 May 17, 2022