A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction.

Overview

Graph2SMILES

A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction.

1. Environmental setup

System requirements

Ubuntu: >= 16.04
conda: >= 4.0
GPU: at least 8GB Memory with CUDA >= 10.1

Note: there is some known compatibility issue with RTX 3090, for which the PyTorch would need to be upgraded to >= 1.8.0. The code has not been heavily tested under 1.8.0, so our best advice is to use some other GPU.

Using conda

Please ensure that conda has been properly initialized, i.e. conda activate is runnable. Then

bash -i scripts/setup.sh
conda activate graph2smiles

2. Data preparation

Download the raw (cleaned and tokenized) data from Google Drive by

python scripts/download_raw_data.py --data_name=USPTO_50k
python scripts/download_raw_data.py --data_name=USPTO_full
python scripts/download_raw_data.py --data_name=USPTO_480k
python scripts/download_raw_data.py --data_name=USPTO_STEREO

It is okay to only download the dataset(s) you want. For each dataset, modify the following environmental variables in scripts/preprocess.sh:

DATASET: one of [USPTO_50k, USPTO_full, USPTO_480k, USPTO_STEREO]
TASK: retrosynthesis for 50k and full, or reaction_prediction for 480k and STEREO
N_WORKERS: number of CPU cores (for parallel preprocessing)

Then run the preprocessing script by

sh scripts/preprocess.sh

3. Model training and validation

Modify the following environmental variables in scripts/train_g2s.sh:

EXP_NO: your own identifier (any string) for logging and tracking
DATASET: one of [USPTO_50k, USPTO_full, USPTO_480k, USPTO_STEREO]
TASK: retrosynthesis for 50k and full, or reaction_prediction for 480k and STEREO
MPN_TYPE: one of [dgcn, dgat]

Then run the training script by

sh scripts/train_g2s.sh

The training process regularly evaluates on the validation sets, both with and without teacher forcing. While this evaluation is done mostly with top-1 accuracy, it is also possible to do holistic evaluation after training finishes to get all the top-n accuracies on the val set. To do that, first modify the following environmental variables in scripts/validate.sh:

EXP_NO: your own identifier (any string) for logging and tracking
DATASET: one of [USPTO_50k, USPTO_full, USPTO_480k, USPTO_STEREO]
CHECKPOINT: the folder containing the checkpoints
FIRST_STEP: the step of the first checkpoints to be evaluated
LAST_STEP: the step of the last checkpoints to be evaluated

Then run the evaluation script by

sh scripts/validate.sh

Note: the evaluation process performs beam search over the whole val sets for all checkpoints. It can take tens of hours.

We provide pretrained model checkpoints for all four datasets with both dgcn and dgat, which can be downloaded from Google Drive with

python scripts/download_checkpoints.py --data_name=$DATASET --mpn_type=$MPN_TYPE

using any combinations of DATASET and MPN_TYPE.

4. Testing

Modify the following environmental variables in scripts/predict.sh:

EXP_NO: your own identifier (any string) for logging and tracking
DATASET: one of [USPTO_50k, USPTO_full, USPTO_480k, USPTO_STEREO]
CHECKPOINT: the path to the checkpoint (which is a .pt file)

Then run the testing script by

sh scripts/predict.sh

which will first run beam search to generate the results for all the test inputs, and then computes the average top-n accuracies.

Delving into Localization Errors for Monocular 3D Object Detection, CVPR'2021

Delving into Localization Errors for Monocular 3D Detection By Xinzhu Ma, Yinmin Zhang, Dan Xu, Dongzhan Zhou, Shuai Yi, Haojie Li, Wanli Ouyang. Intr

XINZHU.MA 124 Jan 04, 2023
Codebase for ECCV18 "The Sound of Pixels"

Sound-of-Pixels Codebase for ECCV18 "The Sound of Pixels". *This repository is under construction, but the core parts are already there. Environment T

Hang Zhao 318 Dec 20, 2022
DCGAN-tensorflow - A tensorflow implementation of Deep Convolutional Generative Adversarial Networks

DCGAN in Tensorflow Tensorflow implementation of Deep Convolutional Generative Adversarial Networks which is a stabilize Generative Adversarial Networ

Taehoon Kim 7.1k Dec 29, 2022
Code to produce syntactic representations that can be used to study syntax processing in the human brain

Can fMRI reveal the representation of syntactic structure in the brain? The code base for our paper on understanding syntactic representations in the

Aniketh Janardhan Reddy 4 Dec 18, 2022
PyTorch implementation of "Debiased Visual Question Answering from Feature and Sample Perspectives" (NeurIPS 2021)

D-VQA We provide the PyTorch implementation for Debiased Visual Question Answering from Feature and Sample Perspectives (NeurIPS 2021). Dependencies P

Zhiquan Wen 19 Dec 22, 2022
这是一个yolox-keras的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Keras当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤 Ho

Bubbliiiing 64 Nov 10, 2022
Pytorch Implementation of LNSNet for Superpixel Segmentation

LNSNet Overview Official implementation of Learning the Superpixel in a Non-iterative and Lifelong Manner (CVPR'21) Learning Strategy The proposed LNS

42 Oct 11, 2022
Pytorch implementation of OCNet series and SegFix.

openseg.pytorch News 2021/09/14 MMSegmentation has supported our ISANet and refer to ISANet for more details. 2021/08/13 We have released the implemen

openseg-group 1.1k Dec 23, 2022
Neural implicit reconstruction experiments for the Vector Neuron paper

Neural Implicit Reconstruction with Vector Neurons This repository contains code for the neural implicit reconstruction experiments in the paper Vecto

Congyue Deng 35 Jan 02, 2023
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u

167 Jan 06, 2023
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022
Dataset used in "PlantDoc: A Dataset for Visual Plant Disease Detection" accepted in CODS-COMAD 2020

PlantDoc: A Dataset for Visual Plant Disease Detection This repository contains the Cropped-PlantDoc dataset used for benchmarking classification mode

Pratik Kayal 109 Dec 29, 2022
AlphaNet Improved Training of Supernet with Alpha-Divergence

AlphaNet: Improved Training of Supernet with Alpha-Divergence This repository contains our PyTorch training code, evaluation code and pretrained model

Facebook Research 87 Oct 10, 2022
BMN: Boundary-Matching Network

BMN: Boundary-Matching Network A pytorch-version implementation codes of paper: "BMN: Boundary-Matching Network for Temporal Action Proposal Generatio

qinxin 260 Dec 06, 2022
This repository will be a summary and outlook on all our open, medical, AI advancements.

medical by LAION This repository will be a summary and outlook on all our open, medical, AI advancements. See the medical-general channel in the medic

LAION AI 18 Dec 30, 2022
NumPy로 구현한 딥러닝 라이브러리입니다. (자동 미분 지원)

Deep Learning Library only using NumPy 본 레포지토리는 NumPy 만으로 구현한 딥러닝 라이브러리입니다. 자동 미분이 구현되어 있습니다. 자동 미분 자동 미분은 미분을 자동으로 계산해주는 기능입니다. 아래 코드는 자동 미분을 활용해 역전파

조준희 17 Aug 16, 2022
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.

3DMV 3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 p

Владислав Молодцов 0 Feb 06, 2022
[CVPR 2022 Oral] MixFormer: End-to-End Tracking with Iterative Mixed Attention

MixFormer The official implementation of the CVPR 2022 paper MixFormer: End-to-End Tracking with Iterative Mixed Attention [Models and Raw results] (G

Multimedia Computing Group, Nanjing University 235 Jan 03, 2023
Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Unsupervised Contrastive Learning of Sound Event Representations This repository contains the code for the following paper. If you use this code or pa

Eduardo Fonseca 81 Dec 22, 2022