This repository contains the scripts for downloading and validating scripts for the documents

Related tags

Deep LearningHC4
Overview

HC4: HLTCOE CLIR Common-Crawl Collection

This repository contains the scripts for downloading and validating scripts for the documents. Document ids, topics, and qrel files are in resources/hc4/

Required packages for the scripts are recorded in requirements.txt.

Topics and Qrels

Topics are stored in jsonl format and located in resources/hc4. The language(s) the topic is annotated for is recored in the language_with_qrels field. We provide the English topic title and description for all topics and human translation for the languages that it has qrels for. We also provide machine translation of them in all three languages for all topics. Narratives(field narratives) are all in English and has one entry for each of the languages that has qrels. Each topic also has an English report(field report) that is designed to record the prior knowledge the searcher has.

Qrels are stored in the classic TREC style located in resources/hc4/{lang}.

Download Documents

To download the documents from Common Crawl, please use the following command. If you plan to use HC4 with ir_datasets, please specify ~/.ir_datasets/hc4 as the storage or make a soft link to to the directory you wish to store the documents. The document ids and hashs are stored in resources/hc4/{lang}/ids*.jsonl.gz. Russian document ids are separated into 8 files.

python download_documents.py --storage ./data/ \
                             --zho ./resources/hc4/zho/ids.jsonl.gz \
                             --fas ./resources/hc4/fas/ids.jsonl.gz \
                             --rus ./resources/hc4/rus/ids.*.jsonl.gz \
                             --jobs 4 \
                             --check_hash 

If you wish to only download the documents for one language, just specify the id file for the language you wish to download. We encourage using the flag --check_hash to varify the documents downloaded match with the documents we intend to use in the collection. The full description of the arguments can be found when execute with the --help flag.

Validate

After documents are downloaded, please run the validate_hc4_documents.py to verify all documents are downloaded for each language.

python validate_hc4_documents.py --hc4_file ./data/zho/hc4_docs.jsonl \
                                 --id_file ./resources/hc4/zho/ids.jsonl.gz \
                                 --qrels ./resources/hc4/zho/*.qrels.v1-0.txt

Reference

If you use this collection, please kindly cite our dataset paper with the following bibtex entry.

@inproceedings{hc4,
	author = {Dawn Lawrie and James Mayfield and Douglas W. Oard and Eugene Yang},
	title = {{HC4}: A New Suite of Test Collections for Ad Hoc {CLIR}},
	booktitle = {Proceedings of the 44th European Conference on Information Retrieval (ECIR)},
	year = {2022}
}
Owner
JHU Human Language Technology Center of Excellence
JHU Human Language Technology Center of Excellence
Use AI to generate a optimized stock portfolio

Use AI, Modern Portfolio Theory, and Monte Carlo simulation's to generate a optimized stock portfolio that minimizes risk while maximizing returns. Ho

Greg James 30 Dec 22, 2022
Implementation of CVAE. Trained CVAE on faces from UTKFace Dataset to produce synthetic faces with a given degree of happiness/smileyness.

Conditional Smiles! (SmileCVAE) About Implementation of AE, VAE and CVAE. Trained CVAE on faces from UTKFace Dataset. Using an encoding of the Smile-s

Raúl Ortega 3 Jan 09, 2022
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch

Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo

Gabriele Corso 56 Dec 23, 2022
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"

This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and

LancoPKU 25 Dec 11, 2022
[CVPR 2022] Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement Announcement 🔥 We have not tested the code yet. We will fini

Xiuwei Xu 7 Oct 30, 2022
Use tensorflow to implement a Deep Neural Network for real time lane detection

LaneNet-Lane-Detection Use tensorflow to implement a Deep Neural Network for real time lane detection mainly based on the IEEE IV conference paper "To

MaybeShewill-CV 1.9k Jan 08, 2023
CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search

CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search This repository is the official implementation of CAPITAL: Optimal Subgrou

Hengrui Cai 0 Oct 19, 2021
PyTorch implementation for ComboGAN

ComboGAN This is our ongoing PyTorch implementation for ComboGAN. Code was written by Asha Anoosheh (built upon CycleGAN) [ComboGAN Paper] If you use

Asha Anoosheh 139 Dec 20, 2022
Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation

Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation Paper Multi-Target Adversarial Frameworks for Domain Adaptation in

Valeo.ai 20 Jun 21, 2022
PyTorch Implementation of CvT: Introducing Convolutions to Vision Transformers

CvT: Introducing Convolutions to Vision Transformers Pytorch implementation of CvT: Introducing Convolutions to Vision Transformers Usage: img = torch

Rishikesh (ऋषिकेश) 193 Jan 03, 2023
Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation

FCN.tensorflow Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation (FCNs). The implementation is largely based on the

Sarath Shekkizhar 1.3k Dec 25, 2022
Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation

Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation (AAAI 2021) Official pytorch implementation of our paper: Discriminative

Beom 74 Dec 27, 2022
This repository contains PyTorch code for Robust Vision Transformers.

This repository contains PyTorch code for Robust Vision Transformers.

117 Dec 07, 2022
Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021.

SphereRPN Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021. Authors: Th

Thang Vu 15 Dec 02, 2022
A python package to perform same transformation to coco-annotation as performed on the image.

coco-transform-util A python package to perform same transformation to coco-annotation as performed on the image. Installation Way 1 $ git clone https

1 Jan 14, 2022
basic tutorial on pytorch

Quick Tutorial on PyTorch PyTorch Basics Linear Regression Logistic Regression Artificial Neural Networks Convolutional Neural Networks Recurrent Neur

7 Sep 15, 2022
Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Face Identity Disentanglement via Latent Space Mapping Description Official Implementation of the paper Face Identity Disentanglement via Latent Space

150 Dec 07, 2022
Cross-modal Retrieval using Transformer Encoder Reasoning Networks (TERN). With use of Metric Learning and FAISS for fast similarity search on GPU

Cross-modal Retrieval using Transformer Encoder Reasoning Networks This project reimplements the idea from "Transformer Reasoning Network for Image-Te

Minh-Khoi Pham 5 Nov 05, 2022
Easy and Efficient Object Detector

EOD Easy and Efficient Object Detector EOD (Easy and Efficient Object Detection) is a general object detection model production framework. It aim on p

381 Jan 01, 2023