This repository contains the scripts for downloading and validating scripts for the documents

Related tags

Deep LearningHC4
Overview

HC4: HLTCOE CLIR Common-Crawl Collection

This repository contains the scripts for downloading and validating scripts for the documents. Document ids, topics, and qrel files are in resources/hc4/

Required packages for the scripts are recorded in requirements.txt.

Topics and Qrels

Topics are stored in jsonl format and located in resources/hc4. The language(s) the topic is annotated for is recored in the language_with_qrels field. We provide the English topic title and description for all topics and human translation for the languages that it has qrels for. We also provide machine translation of them in all three languages for all topics. Narratives(field narratives) are all in English and has one entry for each of the languages that has qrels. Each topic also has an English report(field report) that is designed to record the prior knowledge the searcher has.

Qrels are stored in the classic TREC style located in resources/hc4/{lang}.

Download Documents

To download the documents from Common Crawl, please use the following command. If you plan to use HC4 with ir_datasets, please specify ~/.ir_datasets/hc4 as the storage or make a soft link to to the directory you wish to store the documents. The document ids and hashs are stored in resources/hc4/{lang}/ids*.jsonl.gz. Russian document ids are separated into 8 files.

python download_documents.py --storage ./data/ \
                             --zho ./resources/hc4/zho/ids.jsonl.gz \
                             --fas ./resources/hc4/fas/ids.jsonl.gz \
                             --rus ./resources/hc4/rus/ids.*.jsonl.gz \
                             --jobs 4 \
                             --check_hash 

If you wish to only download the documents for one language, just specify the id file for the language you wish to download. We encourage using the flag --check_hash to varify the documents downloaded match with the documents we intend to use in the collection. The full description of the arguments can be found when execute with the --help flag.

Validate

After documents are downloaded, please run the validate_hc4_documents.py to verify all documents are downloaded for each language.

python validate_hc4_documents.py --hc4_file ./data/zho/hc4_docs.jsonl \
                                 --id_file ./resources/hc4/zho/ids.jsonl.gz \
                                 --qrels ./resources/hc4/zho/*.qrels.v1-0.txt

Reference

If you use this collection, please kindly cite our dataset paper with the following bibtex entry.

@inproceedings{hc4,
	author = {Dawn Lawrie and James Mayfield and Douglas W. Oard and Eugene Yang},
	title = {{HC4}: A New Suite of Test Collections for Ad Hoc {CLIR}},
	booktitle = {Proceedings of the 44th European Conference on Information Retrieval (ECIR)},
	year = {2022}
}
Owner
JHU Human Language Technology Center of Excellence
JHU Human Language Technology Center of Excellence
Learning to See by Looking at Noise

Learning to See by Looking at Noise This is the official implementation of Learning to See by Looking at Noise. In this work, we investigate a suite o

Manel Baradad Jurjo 82 Dec 24, 2022
[NeurIPS'21] Projected GANs Converge Faster

[Project] [PDF] [Supplementary] [Talk] This repository contains the code for our NeurIPS 2021 paper "Projected GANs Converge Faster" by Axel Sauer, Ka

798 Jan 04, 2023
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Model This repository is the official PyTorch implementation of GraphRNN, a graph gene

Jiaxuan 568 Dec 29, 2022
A multi-entity Transformer for multi-agent spatiotemporal modeling.

baller2vec This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotempor

Michael A. Alcorn 56 Nov 15, 2022
We utilize deep reinforcement learning to obtain favorable trajectories for visual-inertial system calibration.

Unified Data Collection for Visual-Inertial Calibration via Deep Reinforcement Learning Update: The lastest code will be updated in this branch. Pleas

ETHZ ASL 27 Dec 29, 2022
Vector Quantization, in Pytorch

Vector Quantization - Pytorch A vector quantization library originally transcribed from Deepmind's tensorflow implementation, made conveniently into a

Phil Wang 665 Jan 08, 2023
LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice,

LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice, for a model of choice, by iteratively removing each feature from the set, and eval

Ahmet Erdem 691 Dec 23, 2022
Many Class Activation Map methods implemented in Pytorch for CNNs and Vision Transformers. Including Grad-CAM, Grad-CAM++, Score-CAM, Ablation-CAM and XGrad-CAM

Class Activation Map methods implemented in Pytorch pip install grad-cam ⭐ Tested on many Common CNN Networks and Vision Transformers. ⭐ Includes smoo

Jacob Gildenblat 6.6k Jan 06, 2023
“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品

“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品,并且能够返回完整地购物清单及顾客应付的实际商品总价格,极大地降低零售行业实际运营过程中巨大的人力成本,提升零售行业无人化、自动化、智能化水平。

thomas-yanxin 192 Jan 05, 2023
Answer a series of contextually-dependent questions like they may occur in natural human-to-human conversations.

SCAI-QReCC-21 [leaderboards] [registration] [forum] [contact] [SCAI] Answer a series of contextually-dependent questions like they may occur in natura

19 Sep 28, 2022
ProjectOxford-ClientSDK - This repo has moved :house: Visit our website for the latest SDKs & Samples

This project has moved 🏠 We heard your feedback! This repo has been deprecated and each project has moved to a new home in a repo scoped by API and p

Microsoft 970 Nov 28, 2022
discovering subdomains, hidden paths, extracting unique links

python-website-crawler discovering subdomains, hidden paths, extracting unique links pip install -r requirements.txt discover subdomain: You can give

merve 4 Sep 05, 2022
Pytorch implementation of BRECQ, ICLR 2021

BRECQ Pytorch implementation of BRECQ, ICLR 2021 @inproceedings{ li&gong2021brecq, title={BRECQ: Pushing the Limit of Post-Training Quantization by Bl

Yuhang Li 148 Dec 28, 2022
Run containerized, rootless applications with podman

Why? restrict scope of file system access run any application without root privileges creates usable "Desktop applications" to integrate into your nor

119 Dec 27, 2022
Unsupervised captioning - Code for Unsupervised Image Captioning

Unsupervised Image Captioning by Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo Introduction Most image captioning models are trained using paired image-se

Yang Feng 207 Dec 24, 2022
Hydra Lightning Template for Structured Configs

Hydra Lightning Template for Structured Configs Template for creating projects with pytorch-lightning and hydra. How to use this template? Create your

Model-driven Machine Learning 4 Jul 19, 2022
Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS of first stage is 3.42 and second stage is 3.47.

SDDNet Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS

Cyril Lv 43 Nov 21, 2022
Official Implement of CVPR 2021 paper “Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting”

RGBT Crowd Counting Lingbo Liu, Jiaqi Chen, Hefeng Wu, Guanbin Li, Chenglong Li, Liang Lin. "Cross-Modal Collaborative Representation Learning and a L

37 Dec 08, 2022
Hardware accelerated, batchable and differentiable optimizers in JAX.

JAXopt Installation | Examples | References Hardware accelerated (GPU/TPU), batchable and differentiable optimizers in JAX. Installation JAXopt can be

Google 621 Jan 08, 2023
Implementation of paper "Towards a Unified View of Parameter-Efficient Transfer Learning"

A Unified Framework for Parameter-Efficient Transfer Learning This is the official implementation of the paper: Towards a Unified View of Parameter-Ef

Junxian He 216 Dec 29, 2022