GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications

Related tags

Deep LearningGPOEO
Overview

GPOEO

GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications. We also implement ODPP [1] as a comparison.

[1] P. Zou, L. Ang, K. Barker, and R. Ge, “Indicator-directed dynamic power management for iterative workloads on gpu-accelerated systems,” in 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID). IEEE, 2020, pp. 559-568.

  1. ./EPOpt contains source code of the GPOEO and ODPP [1].

  2. ./PerformanceMeasurement (PerfMeasure) is a NVIDIA GPU measurer for energy/power/utilities/clocks

Make GPOEO

Modify pathes of headers and libraries in ./EPOpt/makefile . cd ./EPOpt && mkdir ./build && cp makefile ./build cd ./build && make

Make PerfMeasure

Modify pathes of headers and libraries in ./PerformanceMeasurement/makefile . cd ./PerformanceMeasurement && mkdir ./build && cp makefile ./build cd ./build && make

Use GPOEO in python applications

GPOEO only has two APIs:

Begin(GPUID4CUDA, GPUID4NVML, RunMode, MeasureOutDir, ModelDir, TestPrefix)
End()

GPUID4CUDA: GPU ID used in CUDA environment.

GPUID4NVML: GPU ID queried with nvidia-smi and used to initialize CUPTI.

RunMode: "WORK" (run energy saving online); "MEASURE" (measure hardware performance counter metrics and other data for training multi-objective prediction models).

MeasureOutDir: measurement output file path.

ModelDir: the path of multi-objective prediction models.

TestPrefix: prefix name of one run.

The two APIs should be inserted at the beginning and end of the main python file respectively. As shown below:

from PyEPOpt import EPOpt

if __name__=="__main__":
    EPOpt.Begin(GPUID4CUDA, GPUID4NVML, RunMode, MeasureOutDir, ModelDir, TestPrefix)

    .....

    EPOpt.End()

Use ODPP [1] in python applications

ODPP can be implemented as a daemon. However, for the convenience of comparing GPOEO and ODPP, we also implement ODPP into the same form: two APIs.

ODPPBegin(GPUID4CUDA, GPUID4NVML, RunMode, MeasureOutDir, ModelDir, TestPrefix)
ODPPEnd()

GPUID4CUDA: GPU ID used in CUDA environment.

GPUID4NVML: GPU ID queried with nvidia-smi and used to initialize CUPTI.

RunMode: "ODPP" (run ODPP online).

MeasureOutDir: not used.

ModelDir: the path of ODPP models.

TestPrefix: prefix name of one run.

The two APIs should be inserted at the beginning and end of the main python file respectively. As shown below:

from ODPP import ODPPBegin, ODPPEnd

if __name__=="__main__":
    ODPPBegin(GPUID4CUDA, GPUID4NVML, RunMode, MeasureOutDir, ModelDir, TestPrefix)

    .....

    ODPPEnd()
Owner
瑞雪轻飏
瑞雪轻飏
Official code base for the poster "On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation" published in NeurIPS 2021 Workshop (SVRHM)

Self-Supervised Learning (SimCLR) with Biological Plausible Image Augmentations Official code base for the poster "On the use of Cortical Magnificatio

Binxu 8 Aug 17, 2022
Unsupervised phone and word segmentation using dynamic programming on self-supervised VQ features.

Unsupervised Phone and Word Segmentation using Vector-Quantized Neural Networks Overview Unsupervised phone and word segmentation on speech data is pe

Herman Kamper 13 Dec 11, 2022
MCMC samplers for Bayesian estimation in Python, including Metropolis-Hastings, NUTS, and Slice

Sampyl May 29, 2018: version 0.3 Sampyl is a package for sampling from probability distributions using MCMC methods. Similar to PyMC3 using theano to

Mat Leonard 304 Dec 25, 2022
Some methods for comparing network representations in deep learning and neuroscience.

Generalized Shape Metrics on Neural Representations In neuroscience and in deep learning, quantifying the (dis)similarity of neural representations ac

Alex Williams 45 Dec 27, 2022
Caffe implementation for Hu et al. Segmentation for Natural Language Expressions

Segmentation from Natural Language Expressions This repository contains the Caffe reimplementation of the following paper: R. Hu, M. Rohrbach, T. Darr

10 Jul 27, 2021
Deep Compression for Dense Point Cloud Maps.

DEPOCO This repository implements the algorithms described in our paper Deep Compression for Dense Point Cloud Maps. How to get started (using Docker)

Photogrammetry & Robotics Bonn 67 Dec 06, 2022
SGPT: Multi-billion parameter models for semantic search

SGPT: Multi-billion parameter models for semantic search This repository contains code, results and pre-trained models for the paper SGPT: Multi-billi

Niklas Muennighoff 182 Dec 29, 2022
Pytorch implementation of Supporting Clustering with Contrastive Learning, NAACL 2021

Supporting Clustering with Contrastive Learning SCCL (NAACL 2021) Dejiao Zhang, Feng Nan, Xiaokai Wei, Shangwen Li, Henghui Zhu, Kathleen McKeown, Ram

231 Jan 05, 2023
The code of Zero-shot learning for low-light image enhancement based on dual iteration

Zero-shot-dual-iter-LLE The code of Zero-shot learning for low-light image enhancement based on dual iteration. You can get the real night image tests

1 Mar 18, 2022
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Meng Liu 2 Jul 19, 2022
Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Clay Mullis 82 Oct 13, 2022
PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-supervised ViT.

MAE for Self-supervised ViT Introduction This is an unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners for self-sup

36 Oct 30, 2022
AI4Good project for detecting waste in the environment

Detect waste AI4Good project for detecting waste in environment. www.detectwaste.ml. Our latest results were published in Waste Management journal in

108 Dec 25, 2022
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022
MQBench Quantization Aware Training with PyTorch

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
Face Recognition Attendance Project

Face-Recognition-Attendance-Project In This Project You will learn how to mark attendance using face recognition, Hello Guys This is Gautam Kumar, Thi

Gautam Kumar 1 Dec 03, 2022
Creative Applications of Deep Learning w/ Tensorflow

Creative Applications of Deep Learning w/ Tensorflow This repository contains lecture transcripts and homework assignments as Jupyter Notebooks for th

Parag K Mital 1.5k Dec 30, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models Jonathan Ho, Ajay Jain, Pieter Abbeel Paper: https://arxiv.org/abs/2006.11239 Website: https://hojonathanho.g

Jonathan Ho 1.5k Jan 08, 2023
SuperSDR: multiplatform KiwiSDR + CAT transceiver integrator

SuperSDR SuperSDR integrates a realtime spectrum waterfall and audio receive from any KiwiSDR around the world, together with a local (or remote) cont

Marco Cogoni 30 Nov 29, 2022
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

Artёm Komarichev 44 Feb 24, 2022