Semi-supervised Learning for Sentiment Analysis

Overview

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining

Code, models and Datasets for《Neural Semi-supervised Learning for Text Classification Under Large-Scale Pretraining》.

Download Models and Dataset

Datasets and Models are found in the follwing list.

  • Download 3.4M IMDB movie reviews. Save the data at [REVIEWS_PATH]. You can download the dataset HERE.
  • Download the vanilla RoBERTa-large model released by HuggingFace. Save the model at [VANILLA_ROBERTA_LARGE_PATH]. You can download the model HERE.
  • Download in-domain pretrained models in the paper and save the model at [PRETRAIN_MODELS]. We provide three following models. You can download HERE.
    • init-roberta-base: RoBERTa-base model(U) trained over 3.4M movie reviews from scratch.
    • semi-roberta-base: RoBERTa-base model(Large U + U) trained over 3.4M movie reviews from the open-domain pretrained model RoBERTa-base model.
    • semi-roberta-large: RoBERTa-large model(Large U + U) trained over 3.4M movie reviews from the open-domain pretrained model RoBERTa-large model.
  • Download the 1M (D` + D) training dataset for the student model, save the data at [STUDENT_DATA_PATH]. You can download it HERE.
    • student_data_base: student training data generated by roberta-base teacher model
    • student_data_large: student training data generated by roberta-large teacher model
  • Download the IMDB dataset from Andrew Maas' paper. Save the data at [IMDB_DATA_PATH]. For IMDB, The training data and test data are saved in two separate files, each line in the file corresponds to one IMDB sample. You can download HERE.
  • Download shannon_preprocssor.whl to install a binarize tool. Save the .whl file at [SHANNON_PREPROCESS_WHL_PATH]. You can download HERE
  • Download the teacher model and student model that we trained. Save them at [CHECKPOINTS]. You can download HERE
    • roberta-base: teacher and student model checkpoint for roberta-base
    • roberta-large: teacher and student model checkpoint for roberta-large

Installation

pip install -r requirements.txt
pip install [SHANNON_PREPROCESS_WHL_PATH]

Quick Tour

train the roberta-large teacher model

Use the roberta model we pretrained over 3.4M reviews data to train teacher model.
Our teacher model had an accuracy rate of 96.2% on the test set.

cd sstc/tasks/semi-roberta
python trainer.py \
--mode train_teacher \
roberta_path [PRETRAIN_MODELS]\semi-roberta-large \
--imdb_data_path [IMDB_DATA_PATH]/bin \
--gpus=0,1,2,3 \
--save_path [ROOT_SAVE_PATH] \
--precision 16 \
--batch_size 10 \
--min_epochs 10 \
--patience 3 \
--lr 3e-5  

train the roberta-large student model

Use the roberta model we pretrained over 3.4M reviews data to train student model.
Our student model had an accuracy rate of 96.8% on the test set.

cd sstc/tasks/semi-roberta
python trainer.py \
--mode train_student \
--roberta_path [PRETRAIN_MODELS]\semi-roberta-large \
--imdb_data_path [IMDB_DATA_PATH]/bin \
--student_data_path [STUDENT_DATA_PATH]/student_data_large/bin \
--save_path [ROOT_SAVE_PATH] \
--batch_size=10 \
--precision 16 \
--lr=2e-5 \
--warmup_steps 40000 \
--gpus=0,1,2,3,4,5,6,7 \
--accumulate_grad_batches=50

evaluate the student model on the test set

Load student model checkpoint to evaluate over test set to reproduce our result.

cd sstc/tasks/semi-roberta
python evaluate.py \
--checkpoint_path [CHECKPOINTS]/roberta-large/train_student_checkpoint/***.ckpt \
--roberta_path [PRETRAIN_MODELS]\semi-roberta-large \
--imdb_data_path [IMDB_DATA_PATH]/bin \
--batch_size=10 \
--gpus=0,

Reproduce paper results step by step

1.Train in-domain LM based on RoBERTa

1.1 binarize 3.4M reviews data

You should modify the shell according to your paths. The result binarize data will be saved in [REVIEWS_PATH]/bin

cd sstc/tasks/roberta_lm
bash binarize.sh

1.2 train RoBERTa-large (or small, as you wish) over 3.4M reviews data

cd sstc/tasks/roberta_lm
python trainer.py \
--roberta_path [VANILLA_ROBERTA_LARGE_PATH] \
--data_dir [REVIEWS_PATH]/bin \
--gpus=0,1,2,3 \
--save_path [PRETRAIN_ROBERTA_CK_PATH] \
--val_check_interval 0.1 \
--precision 16 \
--batch_size 10 \
--distributed_backend=ddp \
--accumulate_grad_batches=50 \
--adam_epsilon 1e-6 \
--weight_decay 0.01 \
--warmup_steps 10000 \
--workers 8 \
--lr 2e-5

Training checkpoints will be saved in [PRETRAIN_ROBERTA_CK_PATH], find the best checkpoint and convert it to HuggingFace bin format, The relevant code can be found in sstc/tasks/roberta_lm/trainer.py. Save the pretrain bin model at [PRETRAIN_MODELS]\semi-roberta-large, or you can just download the model we trained.

2.train the teacher model

2.1 binarize IMDB dataset.

cd sstc/tasks/semi_roberta/scripts
bash binarize_imdb.sh

You can run the above code to binarize IMDB data, or you can just use the file we binarized in [IMDB_DATA_PATH]\bin

2.2 train the teacher model

cd sstc/tasks/semi_roberta
python trainer.py \
--mode train_teacher \
--roberta_path [PRETRAIN_MODELS]\semi-roberta-large \
--imdb_data_path [IMDB_DATA_PATH]/bin \
--gpus=0,1,2,3 \
--save_path [ROOT_SAVE_PATH] \
--precision 16 \
--batch_size 10 \
--min_epochs 10 \
--patience 3 \
--lr 3e-5  

After training, teacher model checkpoint will be save in [ROOT_SAVE_PATH]/train_teacher_checkpoint. The teacher model we trained had an accuracy rate of 96.2% on the test set. The download link of teacher model checkpoint can be found in quick tour part.

3.label the unlabeled in-domain data U

3.1 label 3.4M data

Use the teacher model that you trained in previous step to label 3.4M reviews data, notice that [ROOT_SAVE_PATH] should be the same as previous setting. The labeled data will be save in [ROOT_SAVE_PATH]\predictions.

cd sstc/tasks/roberta_lm
python trainer.py \
--mode train_teacher \
--roberta_path [PRETRAIN_ROBERTA_PATH] \
--reviews_data_path [REVIEWS_PATH]/bin \
--best_teacher_checkpoint_path [CHECKPOINTS]/roberta-large/train_teacher_checkpoint/***.ckpt \
--gpus=0,1,2,3 \
--save_path [ROOT_SAVE_PATH] 

3.2 select the top-K data points

Firstly, we random sample 3M data from 3.4M reviews data as U', then we select 1M data from U' with the highest score as D', finally, we concat the IMDB train data(D) and D' as train data for student model. The student train data will be saved in [ROOT_SAVE_PATH]\student_data\train.txt, or you can use the data we provide in [STUDENT_DATA_PATH]/student_data_large

cd sstc/tasks/roberta_lm
python data_selector.py \
--imdb_data_path [IMDB_DATA_PATH] \
--save_path [ROOT_SAVE_PATH] 

4.train the student model

4.1 binarize the dataset

You can use the same script in 3.1 to binarize student train data in [ROOT_SAVE_PATH]\student_data\train.txt

4.1 train the student model

use can use the training data we provide in [STUDENT_DATA_PATH]/student_data_large/bin or use your own training data in [ROOT_SAVE_PATH]\student_data\bin, make sure you set the right student_data_path.

cd sstc/tasks/semi-roberta
python trainer.py \
--mode train_student \
--roberta_path [PRETRAIN_MODELS]\semi-roberta-large \
--imdb_data_path [IMDB_DATA_PATH]/bin \
--student_data_path [STUDENT_DATA_PATH]/student_data_large/bin \
--save_path [ROOT_SAVE_PATH] \
--batch_size=10 \
--precision 16 \
--lr=2e-5 \
--warmup_steps 40000 \
--gpus=0,1,2,3,4,5,6,7 \
--accumulate_grad_batches=50

After training, student model checkpoint will be save in [ROOT_SAVE_PATH]/train_student_checkpoint. The student model we trained had an accuracy rate of 96.6% on the test set. The download link of student model checkpoint can be found in Quick tour part.

Official PyTorch implementation of StyleGAN3

Modified StyleGAN3 Repo Changes Made tied to python 3.7 syntax .jpgs instead of .pngs for training sample seeds to recreate the 1024 training grid wit

Derrick Schultz (he/him) 83 Dec 15, 2022
Romanian Automatic Speech Recognition from the ROBIN project

RobinASR This repository contains Robin's Automatic Speech Recognition (RobinASR) for the Romanian language based on the DeepSpeech2 architecture, tog

RACAI 10 Jan 01, 2023
This repository contains the official MATLAB implementation of the TDA method for reverse image filtering

ReverseFilter TDA This repository contains the official MATLAB implementation of the TDA method for reverse image filtering proposed in the paper: "Re

Fergaletto 2 Dec 13, 2021
This package implements THOR: Transformer with Stochastic Experts.

THOR: Transformer with Stochastic Experts This PyTorch package implements Taming Sparsely Activated Transformer with Stochastic Experts. Installation

Microsoft 45 Nov 22, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability an

Liang HUANG 87 Dec 28, 2022
Source code for "OmniPhotos: Casual 360° VR Photography"

OmniPhotos: Casual 360° VR Photography Project Page | Video | Paper | Demo | Data This repository contains the source code for creating and viewing Om

Christian Richardt 144 Dec 30, 2022
[ICLR 2021] Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization

Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma

Kaidi Cao 29 Oct 20, 2022
Perfect implement. Model shared. x0.5 (Top1:60.646) and 1.0x (Top1:69.402).

Shufflenet-v2-Pytorch Introduction This is a Pytorch implementation of faceplusplus's ShuffleNet-v2. For details, please read the following papers:

423 Dec 07, 2022
Sleep staging from ECG, assisted with EEG

Sleep_Staging_Knowledge Distillation This codebase implements knowledge distillation approach for ECG based sleep staging assisted by EEG based sleep

2 Dec 12, 2022
Code for layerwise detection of linguistic anomaly paper (ACL 2021)

Layerwise Anomaly This repository contains the source code and data for our ACL 2021 paper: "How is BERT surprised? Layerwise detection of linguistic

6 Dec 07, 2022
Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks

Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks by Ángel López García-Arias, Masanori Hashimoto, Masato Motomura, and J

Ángel López García-Arias 4 May 19, 2022
NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows

NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows This repo contains the code for the paper Tractable Densit

Layer6 Labs 4 Dec 12, 2022
Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation.

PersonLab This is a Keras implementation of PersonLab for Multi-Person Pose Estimation and Instance Segmentation. The model predicts heatmaps and vari

OCTI 160 Dec 21, 2022
DeepMind Alchemy task environment: a meta-reinforcement learning benchmark

The DeepMind Alchemy environment is a meta-reinforcement learning benchmark that presents tasks sampled from a task distribution with deep underlying structure.

DeepMind 188 Dec 25, 2022
FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection

FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection This repository contains an implementation of FCAF3D, a 3D object detection method introdu

SamsungLabs 153 Dec 29, 2022
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
Construct a neural network frame by Numpy

本项目的CSDN博客链接:https://blog.csdn.net/weixin_41578567/article/details/111482022 1. 概览 本项目主要用于神经网络的学习,通过基于numpy的实现,了解神经网络底层前向传播、反向传播以及各类优化器的原理。 该项目目前已实现的功

24 Jan 22, 2022
DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs

DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs Abstract: Image-to-image translation has recently achieved re

yaxingwang 23 Apr 14, 2022
Open-source python package for the extraction of Radiomics features from 2D and 3D images and binary masks.

pyradiomics v3.0.1 Build Status Linux macOS Windows Radiomics feature extraction in Python This is an open-source python package for the extraction of

Artificial Intelligence in Medicine (AIM) Program 842 Dec 28, 2022