Human Pose Detection on EdgeTPU

Overview

Coral PoseNet

Pose estimation refers to computer vision techniques that detect human figures in images and video, so that one could determine, for example, where someone’s elbow, shoulder or foot show up in an image. PoseNet does not recognize who is in an image, it is simply estimating where key body joints are.

This repo contains a set of PoseNet models that are quantized and optimized for use on Coral's Edge TPU, together with some example code to shows how to run it on a camera stream.

Why PoseNet ?

Pose estimation has many uses, from interactive installations that react to the body to augmented reality, animation, fitness uses, and more. We hope the accessibility of this model inspires more developers and makers to experiment and apply pose detection to their own unique projects, to demonstrate how machine learning can be deployed in ways that are anonymous and private.

How does it work ?

At a high level pose estimation happens in two phases:

  1. An input RGB image is fed through a convolutional neural network. In our case this is a MobileNet V1 architecture. Instead of a classification head however, there is a specialized head which produces a set of heatmaps (one for each kind of key point) and some offset maps. This step runs on the EdgeTPU. The results are then fed into step 2)

  2. A special multi-pose decoding algorithm is used to decode poses, pose confidence scores, keypoint positions, and keypoint confidence scores. Note that unlike in the TensorflowJS version we have created a custom OP in Tensorflow Lite and appended it to the network graph itself. This CustomOP does the decoding (on the CPU) as a post processing step. The advantage is that we don't have to deal with the heatmaps directly and when we then call this network through the Coral Python API we simply get a series of keypoints from the network.

If you're interested in the gory details of the decoding algorithm and how PoseNet works under the hood, I recommend you take a look at the original research paper or this medium post whihch describes the raw heatmaps produced by the convolutional model.

Important concepts

Pose: at the highest level, PoseNet will return a pose object that contains a list of keypoints and an instance-level confidence score for each detected person.

Keypoint: a part of a person’s pose that is estimated, such as the nose, right ear, left knee, right foot, etc. It contains both a position and a keypoint confidence score. PoseNet currently detects 17 keypoints illustrated in the following diagram:

pose keypoints

Keypoint Confidence Score: this determines the confidence that an estimated keypoint position is accurate. It ranges between 0.0 and 1.0. It can be used to hide keypoints that are not deemed strong enough.

Keypoint Position: 2D x and y coordinates in the original input image where a keypoint has been detected.

Examples in this repo

NOTE: PoseNet relies on the latest Pycoral API, tflite_runtime API, and libedgetpu1-std or libedgetpu1-max:

Please also update your system before running these examples. For more information on updating see:

To install all other requirements for third party libraries, simply run

sh install_requirements.sh

simple_pose.py

A minimal example that simply downloads an image, and prints the pose keypoints.

python3 simple_pose.py

pose_camera.py

A camera example that streams the camera image through posenet and draws the pose on top as an overlay. This is a great first example to run to familiarize yourself with the network and its outputs.

Run a simple demo like this:

python3 pose_camera.py

If the camera and monitor are both facing you, consider adding the --mirror flag:

python3 pose_camera.py --mirror

In this repo we have included 3 posenet model files for differnet input resolutions. The larger resolutions are slower of course, but allow a wider field of view, or further-away poses to be processed correctly.

posenet_mobilenet_v1_075_721_1281_quant_decoder_edgetpu.tflite
posenet_mobilenet_v1_075_481_641_quant_decoder_edgetpu.tflite
posenet_mobilenet_v1_075_353_481_quant_decoder_edgetpu.tflite

You can change the camera resolution by using the --res parameter:

python3 pose_camera.py --res 480x360  # fast but low res
python3 pose_camera.py --res 640x480  # default
python3 pose_camera.py --res 1280x720 # slower but high res

anonymizer.py

A fun little app that demonstrates how Coral and PoseNet can be used to analyze human behavior in an anonymous and privacy-preserving way.

Posenet converts an image of a human into a mere skeleton which captures its position and movement over time, but discards any precisely identifying features and the original camera image. Because Coral devices run all the image analysis locally, the actual image is never streamed anywhere and is immediately discarded. The poses can be safely stored or analysed.

For example a store owner may want to study the bahavior of customers as they move through the store, in order to optimize flow and improve product placement. A museum may want to track which areas are most busy, at which times such as to give guidance which exhibits may currently have the shortest waiting times.

With Coral this is possible without recording anybody's image directly or streaming data to a cloud service - instead the images are immediately discarded.

The anaonymizer is a small app that demonstrates this is a fun way. To use the anonymizer set up your camera in a sturdy position. Lauch the app and walk out of the image. This demo waits until no one is in the frame, then stores the 'background' image. Now, step back in. You'll see your current pose overlayed over a static image of the background.

python3 anonymizer.py

(If the camera and monitor are both facing you, consider adding the --mirror flag.)

video of three people interacting with the anonymizer demo

synthesizer.py

This demo allows people to control musical synthesizers with their arms. Up to 3 people are each assigned a different instrument and octave, and control the pitch with their right wrists and the volume with their left wrists.

You'll need to install FluidSynth and a General Midi SoundFont:

apt install fluidsynth fluid-soundfont-gm
pip3 install pyfluidsynth

Now you can run the demo like this:

python3 synthesizer.py

The PoseEngine class

The PoseEngine class (defined in pose_engine.py) allows easy access to the PoseNet network from Python, using the EdgeTPU API.

You simply initialize the class with the location of the model .tflite file and then call DetectPosesInImage, passing a numpy object that contains the image. The numpy object should be in int8, [Y,X,RGB] format.

A minimal example might be:

from tflite_runtime.interpreter import Interpreter
import os
import numpy as np
from PIL import Image
from PIL import ImageDraw
from pose_engine import PoseEngine


os.system('wget https://upload.wikimedia.org/wikipedia/commons/thumb/3/38/'
          'Hindu_marriage_ceremony_offering.jpg/'
          '640px-Hindu_marriage_ceremony_offering.jpg -O /tmp/couple.jpg')
pil_image = Image.open('/tmp/couple.jpg').convert('RGB')
engine = PoseEngine(
    'models/mobilenet/posenet_mobilenet_v1_075_481_641_quant_decoder_edgetpu.tflite')
poses, _ = engine.DetectPosesInImage(pil_image)

for pose in poses:
    if pose.score < 0.4: continue
    print('\nPose Score: ', pose.score)
    for label, keypoint in pose.keypoints.items():
        print('  %-20s x=%-4d y=%-4d score=%.1f' %
              (label, keypoint.point[0], keypoint.point[1], keypoint.score))

To try this, run

python3 simple_pose.py

And you should see an output like this:

Inference time: 14 ms

Pose Score:  0.60698134
  NOSE                 x=211  y=152  score=1.0
  LEFT_EYE             x=224  y=138  score=1.0
  RIGHT_EYE            x=199  y=136  score=1.0
  LEFT_EAR             x=245  y=135  score=1.0
  RIGHT_EAR            x=183  y=129  score=0.8
  LEFT_SHOULDER        x=269  y=169  score=0.7
  RIGHT_SHOULDER       x=160  y=173  score=1.0
  LEFT_ELBOW           x=281  y=255  score=0.6
  RIGHT_ELBOW          x=153  y=253  score=1.0
  LEFT_WRIST           x=237  y=333  score=0.6
  RIGHT_WRIST          x=163  y=305  score=0.5
  LEFT_HIP             x=256  y=318  score=0.2
  RIGHT_HIP            x=171  y=311  score=0.2
  LEFT_KNEE            x=221  y=342  score=0.3
  RIGHT_KNEE           x=209  y=340  score=0.3
  LEFT_ANKLE           x=188  y=408  score=0.2
  RIGHT_ANKLE          x=189  y=410  score=0.2

Owner
google-coral
Open source projects for coral.ai
google-coral
The repository for freeCodeCamp's YouTube course, Algorithmic Trading in Python

Algorithmic Trading in Python This repository Course Outline Section 1: Algorithmic Trading Fundamentals What is Algorithmic Trading? The Differences

Nick McCullum 1.8k Jan 02, 2023
Poplar implementation of "Bundle Adjustment on a Graph Processor" (CVPR 2020)

Poplar Implementation of Bundle Adjustment using Gaussian Belief Propagation on Graphcore's IPU Implementation of CVPR 2020 paper: Bundle Adjustment o

Joe Ortiz 34 Dec 05, 2022
MediaPipeのPythonパッケージのサンプルです。2020/12/11時点でPython実装のある4機能(Hands、Pose、Face Mesh、Holistic)について用意しています。

mediapipe-python-sample MediaPipeのPythonパッケージのサンプルです。 2020/12/11時点でPython実装のある以下4機能について用意しています。 Hands Pose Face Mesh Holistic Requirement mediapipe 0.

KazuhitoTakahashi 217 Dec 12, 2022
Code for Subgraph Federated Learning with Missing Neighbor Generation (NeurIPS 2021)

To run the code Unzip the package to your local directory; Run 'pip install -r requirements.txt' to download required packages; Open file ~/nips_code/

32 Dec 26, 2022
We will release the code of "ConTNet: Why not use convolution and transformer at the same time?" in this repo

ConTNet Introduction ConTNet (Convlution-Tranformer Network) is proposed mainly in response to the following two issues: (1) ConvNets lack a large rec

93 Nov 08, 2022
[CVPR'22] COAP: Learning Compositional Occupancy of People

COAP: Compositional Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2022 paper COAP: Lear

Marko Mihajlovic 111 Dec 11, 2022
TensorFlow implementation of ENet, trained on the Cityscapes dataset.

segmentation TensorFlow implementation of ENet (https://arxiv.org/pdf/1606.02147.pdf) based on the official Torch implementation (https://github.com/e

Fredrik Gustafsson 248 Dec 16, 2022
EfficientDet (Scalable and Efficient Object Detection) implementation in Keras and Tensorflow

EfficientDet This is an implementation of EfficientDet for object detection on Keras and Tensorflow. The project is based on the official implementati

1.3k Dec 19, 2022
Official code for our EMNLP2021 Outstanding Paper MindCraft: Theory of Mind Modeling for Situated Dialogue in Collaborative Tasks

MindCraft Authors: Cristian-Paul Bara*, Sky CH-Wang*, Joyce Chai This is the official code repository for the paper (arXiv link): Cristian-Paul Bara,

Situated Language and Embodied Dialogue (SLED) Research Group 14 Dec 29, 2022
Code for the Paper: Conditional Variational Capsule Network for Open Set Recognition

Conditional Variational Capsule Network for Open Set Recognition This repository hosts the official code related to "Conditional Variational Capsule N

Guglielmo Camporese 35 Nov 21, 2022
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval (NeurIPS'21)

Baleen Baleen is a state-of-the-art model for multi-hop reasoning, enabling scalable multi-hop search over massive collections for knowledge-intensive

Stanford Future Data Systems 22 Dec 05, 2022
Mscp jamf - Build compliance in jamf

mscp_jamf Build compliance in Jamf. This will build the following xml pieces to

Bob Gendler 3 Jul 25, 2022
PyTorch implementation of the Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning This is the official PyTorch implementation of the ContrastiveCrop paper: @artic

249 Dec 28, 2022
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022
Code Repository for Liquid Time-Constant Networks (LTCs)

Liquid time-constant Networks (LTCs) [Update] A Pytorch version is added in our sister repository: https://github.com/mlech26l/keras-ncp This is the o

Ramin Hasani 553 Dec 27, 2022
Implementation of Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021)

PSWE: Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021) PSWE is a permutation-invariant feature aggregation/pooling method based on sliced-Wasser

Navid Naderializadeh 3 May 06, 2022
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 04, 2023
ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers

ViewFormer: NeRF-free Neural Rendering from Few Images Using Transformers Official implementation of ViewFormer. ViewFormer is a NeRF-free neural rend

Jonáš Kulhánek 169 Dec 30, 2022
Safe Local Motion Planning with Self-Supervised Freespace Forecasting, CVPR 2021

Safe Local Motion Planning with Self-Supervised Freespace Forecasting By Peiyun Hu, Aaron Huang, John Dolan, David Held, and Deva Ramanan Citing us Yo

Peiyun Hu 90 Dec 01, 2022
Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library.

SymEngine Python Wrappers Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library. Installation Pip See License section

136 Dec 28, 2022