Human Pose Detection on EdgeTPU

Overview

Coral PoseNet

Pose estimation refers to computer vision techniques that detect human figures in images and video, so that one could determine, for example, where someone’s elbow, shoulder or foot show up in an image. PoseNet does not recognize who is in an image, it is simply estimating where key body joints are.

This repo contains a set of PoseNet models that are quantized and optimized for use on Coral's Edge TPU, together with some example code to shows how to run it on a camera stream.

Why PoseNet ?

Pose estimation has many uses, from interactive installations that react to the body to augmented reality, animation, fitness uses, and more. We hope the accessibility of this model inspires more developers and makers to experiment and apply pose detection to their own unique projects, to demonstrate how machine learning can be deployed in ways that are anonymous and private.

How does it work ?

At a high level pose estimation happens in two phases:

  1. An input RGB image is fed through a convolutional neural network. In our case this is a MobileNet V1 architecture. Instead of a classification head however, there is a specialized head which produces a set of heatmaps (one for each kind of key point) and some offset maps. This step runs on the EdgeTPU. The results are then fed into step 2)

  2. A special multi-pose decoding algorithm is used to decode poses, pose confidence scores, keypoint positions, and keypoint confidence scores. Note that unlike in the TensorflowJS version we have created a custom OP in Tensorflow Lite and appended it to the network graph itself. This CustomOP does the decoding (on the CPU) as a post processing step. The advantage is that we don't have to deal with the heatmaps directly and when we then call this network through the Coral Python API we simply get a series of keypoints from the network.

If you're interested in the gory details of the decoding algorithm and how PoseNet works under the hood, I recommend you take a look at the original research paper or this medium post whihch describes the raw heatmaps produced by the convolutional model.

Important concepts

Pose: at the highest level, PoseNet will return a pose object that contains a list of keypoints and an instance-level confidence score for each detected person.

Keypoint: a part of a person’s pose that is estimated, such as the nose, right ear, left knee, right foot, etc. It contains both a position and a keypoint confidence score. PoseNet currently detects 17 keypoints illustrated in the following diagram:

pose keypoints

Keypoint Confidence Score: this determines the confidence that an estimated keypoint position is accurate. It ranges between 0.0 and 1.0. It can be used to hide keypoints that are not deemed strong enough.

Keypoint Position: 2D x and y coordinates in the original input image where a keypoint has been detected.

Examples in this repo

NOTE: PoseNet relies on the latest Pycoral API, tflite_runtime API, and libedgetpu1-std or libedgetpu1-max:

Please also update your system before running these examples. For more information on updating see:

To install all other requirements for third party libraries, simply run

sh install_requirements.sh

simple_pose.py

A minimal example that simply downloads an image, and prints the pose keypoints.

python3 simple_pose.py

pose_camera.py

A camera example that streams the camera image through posenet and draws the pose on top as an overlay. This is a great first example to run to familiarize yourself with the network and its outputs.

Run a simple demo like this:

python3 pose_camera.py

If the camera and monitor are both facing you, consider adding the --mirror flag:

python3 pose_camera.py --mirror

In this repo we have included 3 posenet model files for differnet input resolutions. The larger resolutions are slower of course, but allow a wider field of view, or further-away poses to be processed correctly.

posenet_mobilenet_v1_075_721_1281_quant_decoder_edgetpu.tflite
posenet_mobilenet_v1_075_481_641_quant_decoder_edgetpu.tflite
posenet_mobilenet_v1_075_353_481_quant_decoder_edgetpu.tflite

You can change the camera resolution by using the --res parameter:

python3 pose_camera.py --res 480x360  # fast but low res
python3 pose_camera.py --res 640x480  # default
python3 pose_camera.py --res 1280x720 # slower but high res

anonymizer.py

A fun little app that demonstrates how Coral and PoseNet can be used to analyze human behavior in an anonymous and privacy-preserving way.

Posenet converts an image of a human into a mere skeleton which captures its position and movement over time, but discards any precisely identifying features and the original camera image. Because Coral devices run all the image analysis locally, the actual image is never streamed anywhere and is immediately discarded. The poses can be safely stored or analysed.

For example a store owner may want to study the bahavior of customers as they move through the store, in order to optimize flow and improve product placement. A museum may want to track which areas are most busy, at which times such as to give guidance which exhibits may currently have the shortest waiting times.

With Coral this is possible without recording anybody's image directly or streaming data to a cloud service - instead the images are immediately discarded.

The anaonymizer is a small app that demonstrates this is a fun way. To use the anonymizer set up your camera in a sturdy position. Lauch the app and walk out of the image. This demo waits until no one is in the frame, then stores the 'background' image. Now, step back in. You'll see your current pose overlayed over a static image of the background.

python3 anonymizer.py

(If the camera and monitor are both facing you, consider adding the --mirror flag.)

video of three people interacting with the anonymizer demo

synthesizer.py

This demo allows people to control musical synthesizers with their arms. Up to 3 people are each assigned a different instrument and octave, and control the pitch with their right wrists and the volume with their left wrists.

You'll need to install FluidSynth and a General Midi SoundFont:

apt install fluidsynth fluid-soundfont-gm
pip3 install pyfluidsynth

Now you can run the demo like this:

python3 synthesizer.py

The PoseEngine class

The PoseEngine class (defined in pose_engine.py) allows easy access to the PoseNet network from Python, using the EdgeTPU API.

You simply initialize the class with the location of the model .tflite file and then call DetectPosesInImage, passing a numpy object that contains the image. The numpy object should be in int8, [Y,X,RGB] format.

A minimal example might be:

from tflite_runtime.interpreter import Interpreter
import os
import numpy as np
from PIL import Image
from PIL import ImageDraw
from pose_engine import PoseEngine


os.system('wget https://upload.wikimedia.org/wikipedia/commons/thumb/3/38/'
          'Hindu_marriage_ceremony_offering.jpg/'
          '640px-Hindu_marriage_ceremony_offering.jpg -O /tmp/couple.jpg')
pil_image = Image.open('/tmp/couple.jpg').convert('RGB')
engine = PoseEngine(
    'models/mobilenet/posenet_mobilenet_v1_075_481_641_quant_decoder_edgetpu.tflite')
poses, _ = engine.DetectPosesInImage(pil_image)

for pose in poses:
    if pose.score < 0.4: continue
    print('\nPose Score: ', pose.score)
    for label, keypoint in pose.keypoints.items():
        print('  %-20s x=%-4d y=%-4d score=%.1f' %
              (label, keypoint.point[0], keypoint.point[1], keypoint.score))

To try this, run

python3 simple_pose.py

And you should see an output like this:

Inference time: 14 ms

Pose Score:  0.60698134
  NOSE                 x=211  y=152  score=1.0
  LEFT_EYE             x=224  y=138  score=1.0
  RIGHT_EYE            x=199  y=136  score=1.0
  LEFT_EAR             x=245  y=135  score=1.0
  RIGHT_EAR            x=183  y=129  score=0.8
  LEFT_SHOULDER        x=269  y=169  score=0.7
  RIGHT_SHOULDER       x=160  y=173  score=1.0
  LEFT_ELBOW           x=281  y=255  score=0.6
  RIGHT_ELBOW          x=153  y=253  score=1.0
  LEFT_WRIST           x=237  y=333  score=0.6
  RIGHT_WRIST          x=163  y=305  score=0.5
  LEFT_HIP             x=256  y=318  score=0.2
  RIGHT_HIP            x=171  y=311  score=0.2
  LEFT_KNEE            x=221  y=342  score=0.3
  RIGHT_KNEE           x=209  y=340  score=0.3
  LEFT_ANKLE           x=188  y=408  score=0.2
  RIGHT_ANKLE          x=189  y=410  score=0.2

Owner
google-coral
Open source projects for coral.ai
google-coral
Human4D Dataset tools for processing and visualization

HUMAN4D: A Human-Centric Multimodal Dataset for Motions & Immersive Media HUMAN4D constitutes a large and multimodal 4D dataset that contains a variet

tofis 15 Nov 09, 2022
Local-Global Stratified Transformer for Efficient Video Recognition

DualFormer This repo is the implementation of our manuscript entitled "Local-Global Stratified Transformer for Efficient Video Recognition". Our model

Sea AI Lab 19 Dec 07, 2022
Nonnegative spatial factorization for multivariate count data

Nonnegative spatial factorization for multivariate count data This repository contains supporting code to facilitate reproducible analysis. For detail

Will Townes 24 Dec 19, 2022
Specificity-preserving RGB-D Saliency Detection

Specificity-preserving RGB-D Saliency Detection Authors: Tao Zhou, Huazhu Fu, Geng Chen, Yi Zhou, Deng-Ping Fan, and Ling Shao. 1. Preface This reposi

Tao Zhou 35 Jan 08, 2023
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

selfcontact This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] It includes the main function

Lea Müller 68 Dec 06, 2022
Event sourced bank - A wide-and-shallow example using the Python event sourcing library

Event Sourced Bank A "wide but shallow" example of using the Python event sourci

3 Mar 09, 2022
Adversarial Graph Augmentation to Improve Graph Contrastive Learning

ADGCL : Adversarial Graph Augmentation to Improve Graph Contrastive Learning Introduction This repo contains the Pytorch [1] implementation of Adversa

susheel suresh 62 Nov 19, 2022
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
Code of Periodic Activation Functions Induce Stationarity

Periodic Activation Functions Induce Stationarity This repository is the official implementation of the methods in the publication: L. Meronen, M. Tra

AaltoML 12 Jun 07, 2022
Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors, CVPR 2021

Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors Human POSEitioning System (H

Aymen Mir 66 Dec 21, 2022
VQMIVC - Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion

VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion (Interspeech

Disong Wang 262 Dec 31, 2022
Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)

VIN: Value Iteration Networks A quick thank you A few others have released amazing related work which helped inspire and improve my own implementation

Kent Sommer 297 Dec 26, 2022
A novel benchmark dataset for Monocular Layout prediction

AutoLay AutoLay: Benchmarking Monocular Layout Estimation Kaustubh Mani, N. Sai Shankar, J. Krishna Murthy, and K. Madhava Krishna Abstract In this pa

Kaustubh Mani 39 Apr 26, 2022
Fast Differentiable Matrix Sqrt Root

Official Pytorch implementation of ICLR 22 paper Fast Differentiable Matrix Square Root

YueSong 42 Dec 30, 2022
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX

Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li

Bethge Lab 2.4k Dec 25, 2022
Automated Evidence Collection for Fake News Detection

Automated Evidence Collection for Fake News Detection This is the code repo for the Automated Evidence Collection for Fake News Detection paper accept

Mrinal Rawat 2 Apr 12, 2022
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.

Richard Wang 443 Dec 06, 2022
A Python library for unevenly-spaced time series analysis

traces A Python library for unevenly-spaced time series analysis. Why? Taking measurements at irregular intervals is common, but most tools are primar

Datascope Analytics 516 Dec 29, 2022
PINN Burgers - 1D Burgers equation simulated by PINN

PINN(s): Physics-Informed Neural Network(s) for Burgers equation This is an impl

ShotaDEGUCHI 1 Feb 12, 2022
Cweqgen - The CW Equation Generator

The CW Equation Generator The cweqgen (pronouced like "Queck-Jen") package provi

2 Jan 15, 2022