Implements the training, testing and editing tools for "Pluralistic Image Completion"

Overview

Pluralistic Image Completion

ArXiv | Project Page | Online Demo | Video(demo)

This repository implements the training, testing and editing tools for "Pluralistic Image Completion" by Chuanxia Zheng, Tat-Jen Cham and Jianfei Cai at NTU. Given one masked image, the proposed Pluralistic model is able to generate multiple and diverse plausible results with various structure, color and texture.

Editing example

Example results

Example completion results of our method on images of face (CelebA), building (Paris), and natural scenes (Places2) with center masks (masks shown in gray). For each group, the masked input image is shown left, followed by sampled results from our model without any post-processing. The results are diverse and plusible.

More results on project page

Getting started

Installation

This code was tested with Pytoch 0.4.0, CUDA 9.0, Python 3.6 and Ubuntu 16.04

pip install visdom dominate
  • Clone this repo:
git clone https://github.com/lyndonzheng/Pluralistic
cd Pluralistic

Datasets

  • face dataset: 24183 training images and 2824 test images from CelebA and use the algorithm of Growing GANs to get the high-resolution CelebA-HQ dataset
  • building dataset: 14900 training images and 100 test images from Paris
  • natural scenery: original training and val images from Places2
  • object original training images from ImageNet.

Training

  • Train a model (default: random irregular and irregular holes):
python train.py --name celeba_random --img_file your_image_path
  • Set --mask_type in options/base_options.py for different training masks. --mask_file path is needed for external irregular mask, such as the irregular mask dataset provided by Liu et al. and Karim lskakov .
  • To view training results and loss plots, run python -m visdom.server and copy the URL http://localhost:8097.
  • Training models will be saved under the checkpoints folder.
  • The more training options can be found in options folder.

Testing

  • Test the model
python test.py  --name celeba_random --img_file your_image_path
  • Set --mask_type in options/base_options.py to test various masks. --mask_file path is needed for 3. external irregular mask,
  • The default results will be saved under the results folder. Set --results_dir for a new path to save the result.

Pretrained Models

Download the pre-trained models using the following links and put them undercheckpoints/ directory.

Our main novelty of this project is the multiple and diverse plausible results for one given masked image. The center_mask models are trained with images of resolution 256*256 with center holes 128x128, which have large diversity for the large missing information. The random_mask models are trained with random regular and irregular holes, which have different diversity for different mask sizes and image backgrounds.

GUI

Download the pre-trained models from Google drive and put them undercheckpoints/ directory.

  • Install the PyQt5 for GUI operation
pip install PyQt5

Basic usage is:

python -m visdom.server
python ui_main.py

The buttons in GUI:

  • Options: Select the model and corresponding dataset for editing.
  • Bush Width: Modify the width of bush for free_form mask.
  • draw/clear: Draw a free_form or rectangle mask for random_model. Clear all mask region for a new input.
  • load: Choose the image from the directory.
  • random: Random load the editing image from the datasets.
  • fill: Fill the holes ranges and show it on the right.
  • save: Save the inputs and outputs to the directory.
  • Original/Output: Switch to show the original or output image.

The steps are as follows:

1. Select a model from 'options'
2. Click the 'random' or 'load' button to get an input image.
3. If you choose a random model, click the 'draw/clear' button to input free_form mask.
4. If you choose a center model, the center mask has been given.
5. click 'fill' button to get multiple results.
6. click 'save' button to save the results.

Editing Example Results

  • Results (original, input, output) for object removing
  • Results (input, output) for face playing. When mask half or right face, the diversity will be small for the short+long term attention layer will copy information from other side. When mask top or down face, the diversity will be large.

Next

  • Free form mask for various Datasets
  • Higher resolution image completion

License


This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This software is for educational and academic research purpose only. If you wish to obtain a commercial royalty bearing license to this software, please contact us at [email protected].

Citation

If you use this code for your research, please cite our paper.

@inproceedings{zheng2019pluralistic,
  title={Pluralistic Image Completion},
  author={Zheng, Chuanxia and Cham, Tat-Jen and Cai, Jianfei},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={1438--1447},
  year={2019}
}

@article{zheng2021pluralistic,
  title={Pluralistic Free-From Image Completion},
  author={Zheng, Chuanxia and Cham, Tat-Jen and Cai, Jianfei},
  journal={International Journal of Computer Vision},
  pages={1--20},
  year={2021},
  publisher={Springer}
}
Owner
Chuanxia Zheng
Chuanxia Zheng
a basic code repository for basic task in CV(classification,detection,segmentation)

basic_cv a basic code repository for basic task in CV(classification,detection,segmentation,tracking) classification generate dataset train predict de

1 Oct 15, 2021
S-attack library. Official implementation of two papers "Are socially-aware trajectory prediction models really socially-aware?" and "Vehicle trajectory prediction works, but not everywhere".

S-attack library: A library for evaluating trajectory prediction models This library contains two research projects to assess the trajectory predictio

VITA lab at EPFL 71 Jan 04, 2023
Yolov5-opencv-cpp-python - Example of using ultralytics YOLO V5 with OpenCV 4.5.4, C++ and Python

yolov5-opencv-cpp-python Example of performing inference with ultralytics YOLO V

183 Jan 09, 2023
Unofficial implementation of PatchCore anomaly detection

PatchCore anomaly detection Unofficial implementation of PatchCore(new SOTA) anomaly detection model Original Paper : Towards Total Recall in Industri

Changwoo Ha 268 Dec 22, 2022
this is a lite easy to use virtual keyboard project for anyone to use

virtual_Keyboard this is a lite easy to use virtual keyboard project for anyone to use motivation I made this for this year's recruitment for RobEn AA

Mohamed Emad 3 Oct 23, 2021
This repository gives an example on how to preprocess the data of the HECKTOR challenge

HECKTOR 2021 challenge This repository gives an example on how to preprocess the data of the HECKTOR challenge. Any other preprocessing is welcomed an

56 Dec 01, 2022
TrackFormer: Multi-Object Tracking with Transformers

TrackFormer: Multi-Object Tracking with Transformers This repository provides the official implementation of the TrackFormer: Multi-Object Tracking wi

Tim Meinhardt 321 Dec 29, 2022
Official pytorch code for SSC-GAN: Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation(ICCV 2021)

SSC-GAN_repo Pytorch implementation for 'Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation'.PDF SSC-GAN:Sem

tyty 4 Aug 28, 2022
Image Matching Evaluation

Image Matching Evaluation (IME) IME provides to test any feature matching algorithm on datasets containing ground-truth homographies. Also, one can re

32 Nov 17, 2022
Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021

Image Translation with ASAPNets Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021 Webpage | Paper | Video Installation insta

Tamar Rott Shaham 100 Dec 28, 2022
Kaggleship: Kaggle Notebooks

Kaggleship: Kaggle Notebooks This repository contains my Kaggle notebooks. They are generally about data science, machine learning, and deep learning.

Erfan Sobhaei 1 Jan 25, 2022
RoMa: A lightweight library to deal with 3D rotations in PyTorch.

RoMa: A lightweight library to deal with 3D rotations in PyTorch. RoMa (which stands for Rotation Manipulation) provides differentiable mappings betwe

NAVER 90 Dec 27, 2022
Explaining in Style: Training a GAN to explain a classifier in StyleSpace

Explaining in Style: Official TensorFlow Colab Explaining in Style: Training a GAN to explain a classifier in StyleSpace Oran Lang, Yossi Gandelsman,

Google 197 Nov 08, 2022
WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose

WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose Yijun Zhou and James Gregson - BMVC2020 Abstract: We present an end-to-end head-pos

368 Dec 26, 2022
a curated list of docker-compose files prepared for testing data engineering tools, databases and open source libraries.

data-services A repository for storing various Data Engineering docker-compose files in one place. How to use it ? Set the required settings in .env f

BigData.IR 525 Dec 03, 2022
Fully Automatic Page Turning on Real Scores

Fully Automatic Page Turning on Real Scores This repository contains the corresponding code for our extended abstract Henkel F., Schwaiger S. and Widm

Florian Henkel 7 Jan 02, 2022
OCRA (Object-Centric Recurrent Attention) source code

OCRA (Object-Centric Recurrent Attention) source code Hossein Adeli and Seoyoung Ahn Please cite this article if you find this repository useful: For

Hossein Adeli 2 Jun 18, 2022
Source code of article "Towards Toxic and Narcotic Medication Detection with Rotated Object Detector"

Towards Toxic and Narcotic Medication Detection with Rotated Object Detector Introduction This is the source code of article: Towards Toxic and Narcot

Woody. Wang 3 Oct 29, 2022
Code Repo for the ACL21 paper "Common Sense Beyond English: Evaluating and Improving Multilingual LMs for Commonsense Reasoning"

Common Sense Beyond English: Evaluating and Improving Multilingual LMs for Commonsense Reasoning This is the Github repository of our paper, "Common S

INK Lab @ USC 19 Nov 30, 2022
A more easy-to-use implementation of KPConv based on PyTorch.

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 36 Dec 29, 2022