Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP 2021.

Overview

The Stem Cell Hypothesis

Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP 2021.

Installation

Run the following setup script. Feel free to install a GPU-enabled PyTorch (torch>=1.6.0).

python3 -m venv env
source env/bin/activate
ln -sf "$(which python2)" env/bin/python
pip install -e .

Data Pre-processing

Download OntoNotes 5 (LDC2013T19.tgz) and put it into the following directory:

mkdir -p ~/.elit/thirdparty/catalog.ldc.upenn.edu/LDC2013T19/
cp LDC2013T19.tgz ~/.elit/thirdparty/catalog.ldc.upenn.edu/LDC2013T19/LDC2013T19.tgz

That's all. ELIT will automatically do the rest for you the first time you run the training script.

Experiments

Here we demonstrate how to experiment with BERT-base but feel free to replace the transformer and task name in the script path for other experiments. Our scripts are grouped by transformers and tasks with clear semantics.

Single Task Learning

The following script will train STL-POS with BERT-base and evaluate its performance on the test set:

python3 stem_cell_hypothesis/en_bert_base/single/pos.py

Multi-Task Learning

The following script will train MTL-5 with BERT-base and evaluate its performance on the test set:

python3 stem_cell_hypothesis/en_bert_base/joint/all.py

Pruning Experiments

The following script will train STL-POS-DP with BERT-base and evaluate its performance on the test set:

python3 stem_cell_hypothesis/en_bert_base/gate/pos.py

You can monitor the pruning process in real time via tensorboard:

tensorboard --logdir=data/model/mtl/ontonotes_bert_base_en/gated/pos/0/runs --samples_per_plugin images=1000

which will show how the heads gradually get claimed in http://localhost:6007/#images:

gates

Once 3 runs are finished, you can visualize the overlap of head utilization across runs via:

python3 stem_cell_hypothesis/en_bert_base/gate/vis_gate_overlap_rgb.py

which will generate the following figure (1a):

Similarly, Figure 1g is generated with stem_cell_hypothesis/en_bert_base/gate/vis_gate_overlap_tasks_gray.py.

15-models-average

Probing Experiments

Once a model is trained, you can probe its representations via the scripts in stem_cell_hypothesis/en_bert_base/head. For example, to probe STL-POS performance, run:

python3 stem_cell_hypothesis/en_bert_base/head/pos.py
python3 stem_cell_hypothesis/en_bert_base/head/vis/pos.py

which generates Figure 4:

pos-probe

You may need to manually change the path and update new results in the scripts.

To probe the unsupervised BERT performance for a single task, e.g., SRL, run:

python3 stem_cell_hypothesis/en_bert_base/head/srl_dot.py

which generates Figure 3:

srl-probe-static

Although not included in the paper due to page limitation, experiments of Chinese, BERT-large, ALBERT, etc. are uploaded to stem_cell_hypothesis. Feel free to run them for your interest.

Citation

If you use this repository in your research, please kindly cite our EMNLP2021 paper:

@inproceedings{he-choi-2021-stem,
    title = "The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders",
    author = "He, Han and Choi, Jinho D.",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.451",
    pages = "5555--5577",
    abstract = "Multi-task learning with transformer encoders (MTL) has emerged as a powerful technique to improve performance on closely-related tasks for both accuracy and efficiency while a question still remains whether or not it would perform as well on tasks that are distinct in nature. We first present MTL results on five NLP tasks, POS, NER, DEP, CON, and SRL, and depict its deficiency over single-task learning. We then conduct an extensive pruning analysis to show that a certain set of attention heads get claimed by most tasks during MTL, who interfere with one another to fine-tune those heads for their own objectives. Based on this finding, we propose the Stem Cell Hypothesis to reveal the existence of attention heads naturally talented for many tasks that cannot be jointly trained to create adequate embeddings for all of those tasks. Finally, we design novel parameter-free probes to justify our hypothesis and demonstrate how attention heads are transformed across the five tasks during MTL through label analysis.",
}
Owner
Emory NLP
NLP Research Laboratory at Emory University
Emory NLP
Learning to Draw: Emergent Communication through Sketching

Learning to Draw: Emergent Communication through Sketching This is the official code for the paper "Learning to Draw: Emergent Communication through S

19 Jul 22, 2022
Code for GNMR in ICDE 2021

GNMR Code for GNMR in ICDE 2021 Please unzip data files in Datasets/MultiInt-ML10M first. Run labcode_preSamp.py (with graph sampling) for ECommerce-c

7 Oct 27, 2022
Vanilla and Prototypical Networks with Random Weights for image classification on Omniglot and mini-ImageNet. Made with Python3.

vanilla-rw-protonets-project Vanilla Prototypical Networks and PNs with Random Weights for image classification on Omniglot and mini-ImageNet. Made wi

Giovani Candido 8 Aug 31, 2022
Iran Open Source Hackathon

Iran Open Source Hackathon is an open-source hackathon (duh) with the aim of encouraging participation in open-source contribution amongst Iranian dev

OSS Hackathon 121 Dec 25, 2022
Face recognition project by matching the features extracted using SIFT.

MV_FaceDetectionWithSIFT Face recognition project by matching the features extracted using SIFT. By : Aria Radmehr Professor : Ali Amiri Dependencies

Aria Radmehr 4 May 31, 2022
v objective diffusion inference code for PyTorch.

v-diffusion-pytorch v objective diffusion inference code for PyTorch, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The

Katherine Crowson 635 Dec 30, 2022
Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Nerdy Rodent 2.3k Jan 04, 2023
TransMorph: Transformer for Medical Image Registration

TransMorph: Transformer for Medical Image Registration keywords: Vision Transformer, Swin Transformer, convolutional neural networks, image registrati

Junyu Chen 180 Jan 07, 2023
HomoInterpGAN - Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation

HomoInterpGAN Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation (CVPR 2019, oral) Installation The implementation is base

Ying-Cong Chen 99 Nov 15, 2022
Torch implementation of "Enhanced Deep Residual Networks for Single Image Super-Resolution"

NTIRE2017 Super-resolution Challenge: SNU_CVLab Introduction This is our project repository for CVPR 2017 Workshop (2nd NTIRE). We, Team SNU_CVLab, (B

Bee Lim 625 Dec 30, 2022
Object-Centric Learning with Slot Attention

Slot Attention This is a re-implementation of "Object-Centric Learning with Slot Attention" in PyTorch (https://arxiv.org/abs/2006.15055). Requirement

Untitled AI 72 Jan 02, 2023
Efficiently computes derivatives of numpy code.

Note: Autograd is still being maintained but is no longer actively developed. The main developers (Dougal Maclaurin, David Duvenaud, Matt Johnson, and

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 6.1k Jan 08, 2023
LightNet++: Boosted Light-weighted Networks for Real-time Semantic Segmentation

LightNet++ !!!New Repo.!!! ⇒ EfficientNet.PyTorch: Concise, Modular, Human-friendly PyTorch implementation of EfficientNet with Pre-trained Weights !!

linksense 237 Jan 05, 2023
The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark."

FFA-IR The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark." The framework is inheri

Mingjie 28 Dec 16, 2022
A transformer model to predict pathogenic mutations

MutFormer MutFormer is an application of the BERT (Bidirectional Encoder Representations from Transformers) NLP (Natural Language Processing) model wi

Wang Genomics Lab 2 Nov 29, 2022
Implementation of Stochastic Image-to-Video Synthesis using cINNs.

Stochastic Image-to-Video Synthesis using cINNs Official PyTorch implementation of Stochastic Image-to-Video Synthesis using cINNs accepted to CVPR202

CompVis Heidelberg 135 Dec 28, 2022
Official Pytorch implementation for AAAI2021 paper (RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning)

RSPNet Official Pytorch implementation for AAAI2021 paper "RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning" [Suppleme

35 Jun 24, 2022
Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes

Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes This repository is the official implementation of Us

Damien Bouchabou 0 Oct 18, 2021
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Created by Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas from Sta

Charles R. Qi 4k Dec 30, 2022
This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong Poisons

Adversarial poison generation and evaluation. This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong

31 Nov 01, 2022