This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong Poisons

Overview

Adversarial poison generation and evaluation.

This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong Poisons, authored by Liam Fowl, Micah Goldblum, Ping-yeh Chiang, Jonas Geiping, Wojtek Czaja, Tom Goldstein.

We use and adapt code from the publicly available Witches' Brew (Geiping et al.) github repository.

Dependencies:

  • PyTorch => 1.6.*
  • torchvision > 0.5.*

USAGE:

The cmd-line script anneal.py is responsible for generating poisons.

Other possible arguments for poison generation can be found under village/options.py. Many of these arguments do not apply to our implementation and are relics from the github repository which we adapted (see above).

Teaser

CIFAR-10 Example

Generation

To poison CIFAR-10 with our most powerful attack (class targeted), for a ResNet-18 with epsilon bound 8, use python anneal.py --net ResNet18 --recipe targeted --eps 8 --budget 1.0 --target_criterion reverse_xent --save poison_dataset_batched --poison_path /path/to/save/poisons --attackoptim PGD

  • Note 1: this will generate poisons according to a simple label permutation found in poison_generation/shop/forgemaster_targeted.py defined in the _label_map method. One can easily modify this to any permutation on the label space.

  • Note 2: this could take several hours depending on the GPU used. To decrease the time, use the flag --restarts 1. This will decrease the time required to craft the poisons, but also potentially decrease the potency of the poisons.

Generating poisons with untargeted attacks is more brittle, and the success of the generated poisons vary depending on the poison initialization much more than the targeted attacks. Because generating multiple sets of poisons can take a longer time, we have included an anonymous google drive link to one of our best untargeted dataset for CIFAR-10. This can be evaluated in the same way as the poisons generated with the above command, simply download the zip file from here and extract the data.

Evaluation

You can then evaluate the poisons you generated (saved in poisons) by running python poison_evaluation/main.py --load_path /path/to/your/saved/poisons --runs 1

Where --load_path specifies the path to the generated poisons, and --runs specifies how many runs to evaluate the poisons over. This will test on a ResNet-18, but this can be changed with the --net flag.

ImageNet

ImageNet poisons can be optimized in a similar way, although it requires much more time and resources to do so. If you would like to attempt this, you can use the included info.pkl file. This splits up the ImageNet dataset into subsets of 25k that can then be crafted one at a time (52 subsets in total). Each subset can take anywhere from 1-3 days to craft depending on your GPU resources. You also need >200gb of storage to store the generated dataset.

A command for crafting on one such subset is:

python anneal.py --recipe targeted --eps 8 --budget 1.0 --dataset ImageNet --pretrained --target_criterion reverse_xent --poison_partition 25000 --save poison_dataset_batched --poison_path /path/to/save/poisons --restarts 1 --resume /path/to/info.pkl --resume_idx 0 --attackoptim PGD

You can generate poisons for all of ImageNet by iterating through all the indices (0,1,2,...,51) of the ImageNet subsets.

  • Note: we are working to produce/run a deterministic seeded version of the above ImageNet generation and we will update the code appropriately.
Deep-Learning-Image-Captioning - Implementing convolutional and recurrent neural networks in Keras to generate sentence descriptions of images

Deep Learning - Image Captioning with Convolutional and Recurrent Neural Nets ========================================================================

23 Apr 06, 2022
The Dual Memory is build from a simple CNN for the deep memory and Linear Regression fro the fast Memory

Simple-DMA a simple Dual Memory Architecture for classifications. based on the paper Dual-Memory Deep Learning Architectures for Lifelong Learning of

1 Jan 27, 2022
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
A Simple and Versatile Framework for Object Detection and Instance Recognition

SimpleDet - A Simple and Versatile Framework for Object Detection and Instance Recognition Major Features FP16 training for memory saving and up to 2.

TuSimple 3k Dec 12, 2022
Mmdet benchmark with python

mmdet_benchmark 本项目是为了研究 mmdet 推断性能瓶颈,并且对其进行优化。 配置与环境 机器配置 CPU:Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz GPU:NVIDIA GeForce RTX 3080 10GB 内存:64G 硬盘:1T

杨培文 (Yang Peiwen) 24 May 21, 2022
Code for project: "Learning to Minimize Remainder in Supervised Learning".

Learning to Minimize Remainder in Supervised Learning Code for project: "Learning to Minimize Remainder in Supervised Learning". Requirements and Envi

Yan Luo 0 Jul 18, 2021
Local-Global Stratified Transformer for Efficient Video Recognition

DualFormer This repo is the implementation of our manuscript entitled "Local-Global Stratified Transformer for Efficient Video Recognition". Our model

Sea AI Lab 19 Dec 07, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: "NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion". NÜWA is a unified multimodal

Microsoft 2.6k Jan 03, 2023
A framework for using LSTMs to detect anomalies in multivariate time series data. Includes spacecraft anomaly data and experiments from the Mars Science Laboratory and SMAP missions.

Telemanom (v2.0) v2.0 updates: Vectorized operations via numpy Object-oriented restructure, improved organization Merge branches into single branch fo

Kyle Hundman 844 Dec 28, 2022
Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks

Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks This is a Pytorch-Lightning implementation of the paper "Self-s

Photogrammetry & Robotics Bonn 111 Dec 06, 2022
Apply a perspective transformation to a raster image inside Inkscape (no need to use an external software such as GIMP or Krita).

Raster Perspective Apply a perspective transformation to bitmap image using the selected path as envelope, without the need to use an external softwar

s.ouchene 19 Dec 22, 2022
Official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right"

Surface Form Competition This is the official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right" We p

Peter West 46 Dec 23, 2022
PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

halo 368 Dec 06, 2022
NFNets and Adaptive Gradient Clipping for SGD implemented in PyTorch

PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping Paper: https://arxiv.org/abs/2102.06171.pdf Original code: htt

Vaibhav Balloli 320 Jan 02, 2023
An exploration of log domain "alternative floating point" for hardware ML/AI accelerators.

This repository contains the SystemVerilog RTL, C++, HLS (Intel FPGA OpenCL to wrap RTL code) and Python needed to reproduce the numerical results in

Facebook Research 373 Dec 31, 2022
CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection

CLOCs is a novel Camera-LiDAR Object Candidates fusion network. It provides a low-complexity multi-modal fusion framework that improves the performance of single-modality detectors. CLOCs operates on

Su Pang 254 Dec 16, 2022
the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)

RMA-Net This repo is the implementation of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021). Paper

Wanquan Feng 205 Nov 09, 2022
Jax/Flax implementation of Variational-DiffWave.

jax-variational-diffwave Jax/Flax implementation of Variational-DiffWave. (Zhifeng Kong et al., 2020, Diederik P. Kingma et al., 2021.) DiffWave with

YoungJoong Kim 37 Dec 16, 2022
Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression

Regression Transformer Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression . Development se

International Business Machines 27 Jan 05, 2023
Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

183 Dec 28, 2022