This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong Poisons

Overview

Adversarial poison generation and evaluation.

This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong Poisons, authored by Liam Fowl, Micah Goldblum, Ping-yeh Chiang, Jonas Geiping, Wojtek Czaja, Tom Goldstein.

We use and adapt code from the publicly available Witches' Brew (Geiping et al.) github repository.

Dependencies:

  • PyTorch => 1.6.*
  • torchvision > 0.5.*

USAGE:

The cmd-line script anneal.py is responsible for generating poisons.

Other possible arguments for poison generation can be found under village/options.py. Many of these arguments do not apply to our implementation and are relics from the github repository which we adapted (see above).

Teaser

CIFAR-10 Example

Generation

To poison CIFAR-10 with our most powerful attack (class targeted), for a ResNet-18 with epsilon bound 8, use python anneal.py --net ResNet18 --recipe targeted --eps 8 --budget 1.0 --target_criterion reverse_xent --save poison_dataset_batched --poison_path /path/to/save/poisons --attackoptim PGD

  • Note 1: this will generate poisons according to a simple label permutation found in poison_generation/shop/forgemaster_targeted.py defined in the _label_map method. One can easily modify this to any permutation on the label space.

  • Note 2: this could take several hours depending on the GPU used. To decrease the time, use the flag --restarts 1. This will decrease the time required to craft the poisons, but also potentially decrease the potency of the poisons.

Generating poisons with untargeted attacks is more brittle, and the success of the generated poisons vary depending on the poison initialization much more than the targeted attacks. Because generating multiple sets of poisons can take a longer time, we have included an anonymous google drive link to one of our best untargeted dataset for CIFAR-10. This can be evaluated in the same way as the poisons generated with the above command, simply download the zip file from here and extract the data.

Evaluation

You can then evaluate the poisons you generated (saved in poisons) by running python poison_evaluation/main.py --load_path /path/to/your/saved/poisons --runs 1

Where --load_path specifies the path to the generated poisons, and --runs specifies how many runs to evaluate the poisons over. This will test on a ResNet-18, but this can be changed with the --net flag.

ImageNet

ImageNet poisons can be optimized in a similar way, although it requires much more time and resources to do so. If you would like to attempt this, you can use the included info.pkl file. This splits up the ImageNet dataset into subsets of 25k that can then be crafted one at a time (52 subsets in total). Each subset can take anywhere from 1-3 days to craft depending on your GPU resources. You also need >200gb of storage to store the generated dataset.

A command for crafting on one such subset is:

python anneal.py --recipe targeted --eps 8 --budget 1.0 --dataset ImageNet --pretrained --target_criterion reverse_xent --poison_partition 25000 --save poison_dataset_batched --poison_path /path/to/save/poisons --restarts 1 --resume /path/to/info.pkl --resume_idx 0 --attackoptim PGD

You can generate poisons for all of ImageNet by iterating through all the indices (0,1,2,...,51) of the ImageNet subsets.

  • Note: we are working to produce/run a deterministic seeded version of the above ImageNet generation and we will update the code appropriately.
Weakly-supervised object detection.

Wetectron Wetectron is a software system that implements state-of-the-art weakly-supervised object detection algorithms. Project CVPR'20, ECCV'20 | Pa

NVIDIA Research Projects 342 Jan 05, 2023
Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集

English | 简体中文 Latest News 2021.10.25 Paper "Docking-based Virtual Screening with Multi-Task Learning" is accepted by BIBM 2021. 2021.07.29 PaddleHeli

633 Jan 04, 2023
CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer

CycleTransGAN-EVC CycleTransGAN-EVC: A CycleGAN-based Emotional Voice Conversion Model with Transformer Demo emotion CycleTransGAN CycleTransGAN Cycle

24 Dec 15, 2022
This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

OpenAI 3k Dec 26, 2022
Task-related Saliency Network For Few-shot learning

Task-related Saliency Network For Few-shot learning This is an official implementation in Tensorflow of TRSN. Abstract An essential cue of human wisdo

1 Nov 18, 2021
This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Skin Lesion detection using YOLO This project deal

Lalith Veerabhadrappa Badiger 1 Nov 22, 2021
Generating Images with Recurrent Adversarial Networks

Generating Images with Recurrent Adversarial Networks Python (Theano) implementation of Generating Images with Recurrent Adversarial Networks code pro

Daniel Jiwoong Im 121 Sep 08, 2022
Code for testing convergence rates of Lipschitz learning on graphs

📈 LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021
Learning based AI for playing multi-round Koi-Koi hanafuda card games. Have fun.

Koi-Koi AI Learning based AI for playing multi-round Koi-Koi hanafuda card games. Platform Python PyTorch PySimpleGUI (for the interface playing vs AI

Sanghai Guan 10 Nov 20, 2022
Source code of article "Towards Toxic and Narcotic Medication Detection with Rotated Object Detector"

Towards Toxic and Narcotic Medication Detection with Rotated Object Detector Introduction This is the source code of article: Towards Toxic and Narcot

Woody. Wang 3 Oct 29, 2022
An end-to-end framework for mixed-integer optimization with data-driven learned constraints.

OptiCL OptiCL is an end-to-end framework for mixed-integer optimization (MIO) with data-driven learned constraints. We address a problem setting in wh

Holly Wiberg 57 Dec 26, 2022
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)

pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv

Kate Rakelly 516 Jan 05, 2023
AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020) Introduction AdaShare is a novel and differentiable approach fo

94 Dec 22, 2022
YOLO5Face: Why Reinventing a Face Detector (https://arxiv.org/abs/2105.12931)

Introduction Yolov5-face is a real-time,high accuracy face detection. Performance Single Scale Inference on VGA resolution(max side is equal to 640 an

DeepCam Shenzhen 1.4k Jan 07, 2023
Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

NeuLab 40 Dec 23, 2022
Computations and statistics on manifolds with geometric structures.

Geomstats Code Continuous Integration Code coverage (numpy) Code coverage (autograd, tensorflow, pytorch) Documentation Community NEWS: Geomstats is r

875 Dec 31, 2022
Attack on Confidence Estimation algorithm from the paper "Disrupting Deep Uncertainty Estimation Without Harming Accuracy"

Attack on Confidence Estimation (ACE) This repository is the official implementation of "Disrupting Deep Uncertainty Estimation Without Harming Accura

3 Mar 30, 2022
Bio-OFC gym implementation and Gym-Fly environment

Bio-OFC gym implementation and Gym-Fly environment This repository includes the gym compatible implementation of the Bio-OFC algorithm from the paper

Siavash Golkar 1 Nov 16, 2021
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Melon(Xuguang Duan) 96 Nov 01, 2022
Survival analysis in Python

What is survival analysis and why should I learn it? Survival analysis was originally developed and applied heavily by the actuarial and medical commu

Cameron Davidson-Pilon 2k Jan 08, 2023