This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong Poisons

Overview

Adversarial poison generation and evaluation.

This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong Poisons, authored by Liam Fowl, Micah Goldblum, Ping-yeh Chiang, Jonas Geiping, Wojtek Czaja, Tom Goldstein.

We use and adapt code from the publicly available Witches' Brew (Geiping et al.) github repository.

Dependencies:

  • PyTorch => 1.6.*
  • torchvision > 0.5.*

USAGE:

The cmd-line script anneal.py is responsible for generating poisons.

Other possible arguments for poison generation can be found under village/options.py. Many of these arguments do not apply to our implementation and are relics from the github repository which we adapted (see above).

Teaser

CIFAR-10 Example

Generation

To poison CIFAR-10 with our most powerful attack (class targeted), for a ResNet-18 with epsilon bound 8, use python anneal.py --net ResNet18 --recipe targeted --eps 8 --budget 1.0 --target_criterion reverse_xent --save poison_dataset_batched --poison_path /path/to/save/poisons --attackoptim PGD

  • Note 1: this will generate poisons according to a simple label permutation found in poison_generation/shop/forgemaster_targeted.py defined in the _label_map method. One can easily modify this to any permutation on the label space.

  • Note 2: this could take several hours depending on the GPU used. To decrease the time, use the flag --restarts 1. This will decrease the time required to craft the poisons, but also potentially decrease the potency of the poisons.

Generating poisons with untargeted attacks is more brittle, and the success of the generated poisons vary depending on the poison initialization much more than the targeted attacks. Because generating multiple sets of poisons can take a longer time, we have included an anonymous google drive link to one of our best untargeted dataset for CIFAR-10. This can be evaluated in the same way as the poisons generated with the above command, simply download the zip file from here and extract the data.

Evaluation

You can then evaluate the poisons you generated (saved in poisons) by running python poison_evaluation/main.py --load_path /path/to/your/saved/poisons --runs 1

Where --load_path specifies the path to the generated poisons, and --runs specifies how many runs to evaluate the poisons over. This will test on a ResNet-18, but this can be changed with the --net flag.

ImageNet

ImageNet poisons can be optimized in a similar way, although it requires much more time and resources to do so. If you would like to attempt this, you can use the included info.pkl file. This splits up the ImageNet dataset into subsets of 25k that can then be crafted one at a time (52 subsets in total). Each subset can take anywhere from 1-3 days to craft depending on your GPU resources. You also need >200gb of storage to store the generated dataset.

A command for crafting on one such subset is:

python anneal.py --recipe targeted --eps 8 --budget 1.0 --dataset ImageNet --pretrained --target_criterion reverse_xent --poison_partition 25000 --save poison_dataset_batched --poison_path /path/to/save/poisons --restarts 1 --resume /path/to/info.pkl --resume_idx 0 --attackoptim PGD

You can generate poisons for all of ImageNet by iterating through all the indices (0,1,2,...,51) of the ImageNet subsets.

  • Note: we are working to produce/run a deterministic seeded version of the above ImageNet generation and we will update the code appropriately.
The Video-based Accident Detection System built in Python

Accident-detection-system About the Project This Repository contains the Video-based Accident Detection System built in Python. Contributors Yukta Gop

SURYAVANSHI SNEHAL BALKRISHNA 50 Dec 07, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI'22)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
This is the code repository for the paper "Identification of the Generalized Condorcet Winner in Multi-dueling Bandits" (NeurIPS 2021).

Code Repository for the Paper "Identification of the Generalized Condorcet Winner in Multi-dueling Bandits" (To appear in: Proceedings of NeurIPS20

1 Oct 03, 2022
Yolov3 pytorch implementation

YOLOV3 Pytorch实现 在bubbliiing大佬代码的基础上进行了修改,添加了部分注释。 预训练模型 预训练模型来源于bubbliiing。 链接:https://pan.baidu.com/s/1ncREw6Na9ycZptdxiVMApw 提取码:appk 训练自己的数据集 按照VO

4 Aug 27, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Master Docs License Apache MXNet (incubating) is a deep learning framework designed for both efficiency an

ROCm Software Platform 29 Nov 16, 2022
ML models implementation practice

Let's implement various ML algorithms with numpy/tf Vanilla Neural Network https://towardsdatascience.com/lets-code-a-neural-network-in-plain-numpy-ae

Jinsoo Heo 4 Jul 04, 2021
This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object Tracking with TRansformer.

MOTR: End-to-End Multiple-Object Tracking with TRansformer This repository is an official implementation of the paper MOTR: End-to-End Multiple-Object

348 Jan 07, 2023
🗣️ Microsoft Edge TTS for Home Assistant, no need for app_key

Microsoft Edge TTS for Home Assistant This component is based on the TTS service of Microsoft Edge browser, no need to apply for app_key. Install Down

152 Dec 31, 2022
Implementation of the bachelor's thesis "Real-time stock predictions with deep learning and news scraping".

Real-time stock predictions with deep learning and news scraping This repository contains a partial implementation of my bachelor's thesis "Real-time

David Álvarez de la Torre 0 Feb 09, 2022
Code for "LoFTR: Detector-Free Local Feature Matching with Transformers", CVPR 2021

LoFTR: Detector-Free Local Feature Matching with Transformers Project Page | Paper LoFTR: Detector-Free Local Feature Matching with Transformers Jiami

ZJU3DV 1.4k Jan 04, 2023
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Neural Circuit Policies Enabling Auditable Autonomy Online access via SharedIt Neural Circuit Policies (NCPs) are designed sparse recurrent neural net

8 Jan 07, 2023
Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training

SelfText Beyond Polygon: Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training Introduction This is a PyTorch implementation of "

weijiawu 34 Nov 09, 2022
Deep Q-network learning to play flappybird.

AI Plays Flappy Bird I've trained a DQN that learns to play flappy bird on it's own. Try the pre-trained model First install the pip requirements and

Anish Shrestha 3 Mar 01, 2022
GT4SD, an open-source library to accelerate hypothesis generation in the scientific discovery process.

The GT4SD (Generative Toolkit for Scientific Discovery) is an open-source platform to accelerate hypothesis generation in the scientific discovery process. It provides a library for making state-of-t

Generative Toolkit 4 Scientific Discovery 142 Dec 24, 2022
Using CNN to mimic the driver based on training data from Torcs

Behavioural-Cloning-in-autonomous-driving Using CNN to mimic the driver based on training data from Torcs. Approach First, the data was collected from

Sudharshan 2 Jan 05, 2022
Classifying cat and dog images using Kaggle dataset

PyTorch Image Classification Classifies an image as containing either a dog or a cat (using Kaggle's public dataset), but could easily be extended to

Robert Coleman 74 Nov 22, 2022
Project dự đoán giá cổ phiếu bằng thuật toán LSTM gồm: code train và code demo

Web predicts stock prices using Long - Short Term Memory algorithm Give me some start please!!! User interface image: Choose: DayBegin, DayEnd, Stock

Vo Thuong Truong Nhon 8 Nov 11, 2022
Code for the paper "Implicit Representations of Meaning in Neural Language Models"

Implicit Representations of Meaning in Neural Language Models Preliminaries Create and set up a conda environment as follows: conda create -n state-pr

Belinda Li 39 Nov 03, 2022
[ICML 2021] Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data

Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data This repo provides the source code & data of our paper: Break-It-Fix-It: Unsupervised

Michihiro Yasunaga 86 Nov 30, 2022
Vikrant Deshpande 1 Nov 17, 2022