A PyTorch implementation of "Semi-Supervised Graph Classification: A Hierarchical Graph Perspective" (WWW 2019)

Overview

SEAL

PWC codebeat badge repo sizebenedekrozemberczki⠀⠀

A PyTorch implementation of Semi-Supervised Graph Classification: A Hierarchical Graph Perspective (WWW 2019)

Abstract

Node classification and graph classification are two graph learning problems that predict the class label of a node and the class label of a graph respectively. A node of a graph usually represents a real-world entity, e.g., a user in a social network, or a protein in a protein-protein interaction network. In this work, we consider a more challenging but practically useful setting, in which a node itself is a graph instance. This leads to a hierarchical graph perspective which arises in many domains such as social network, biological network and document collection. For example, in a social network, a group of people with shared interests forms a user group, whereas a number of user groups are interconnected via interactions or common members. We study the node classification problem in the hierarchical graph where a `node' is a graph instance, e.g., a user group in the above example. As labels are usually limited in real-world data, we design two novel semi-supervised solutions named Semi-supervised graph classification via Cautious/Active Iteration (or SEAL-C/AI in short). SEAL-C/AI adopt an iterative framework that takes turns to build or update two classifiers, one working at the graph instance level and the other at the hierarchical graph level. To simplify the representation of the hierarchical graph, we propose a novel supervised, self-attentive graph embedding method called SAGE, which embeds graph instances of arbitrary size into fixed-length vectors. Through experiments on synthetic data and Tencent QQ group data, we demonstrate that SEAL-C/AI not only outperform competing methods by a significant margin in terms of accuracy/Macro-F1, but also generate meaningful interpretations of the learned representations.

This repository provides a PyTorch implementation of SEAL-CI as described in the paper:

Semi-Supervised Graph Classification: A Hierarchical Graph Perspective. Jia Li, Yu Rong, Hong Cheng, Helen Meng, Wenbing Huang, Junzhou Huang. WWW, 2019. [Paper]

A TensorFlow implementatio of the model is available [here].

Requirements

The codebase is implemented in Python 3.5.2. package versions used for development are just below.

networkx          2.4
tqdm              4.28.1
numpy             1.15.4
pandas            0.23.4
texttable         1.5.0
scipy             1.1.0
argparse          1.1.0
torch             1.1.0
torch-scatter     1.4.0
torch-sparse      0.4.3
torch-cluster     1.4.5
torch-geometric   1.3.2
torchvision       0.3.0

Datasets

Graphs

The code takes graphs for training from an input folder where each graph is stored as a JSON. Graphs used for testing are also stored as JSON files. Every node id and node label has to be indexed from 0. Keys of dictionaries are stored strings in order to make JSON serialization possible.

The graphs file has to be unzipped in the input folder.

Every JSON file has the following key-value structure:

{"edges": [[0, 1],[1, 2],[2, 3],[3, 4]],
 "features": {"0": ["A","B"], "1": ["B","K"], "2": ["C","F","A"], "3": ["A","B"], "4": ["B"]},
 "label": "A"}

The edges key has an edge list value which descibes the connectivity structure. The features key has features for each node which are stored as a dictionary -- within this nested dictionary features are list values, node identifiers are keys. The label key has a value which is the class membership.

Hierarchical graph

The hierarchical graph is stored as an edge list, where graph identifiers integers are the node identifiers. Finally, node pairs are separated by commas in the comma separated values file. This edge list file has a header.

Options

Training a SEAL-CI model is handled by the src/main.py script which provides the following command line arguments.

Input and output options

  --graphs                STR    Training graphs folder.      Default is `input/graphs/`.
  --hierarchical-graph    STR    Macro level graph.           Default is `input/synthetic_edges.csv`.

Model options

  --epochs                      INT     Number of epochs.                  Default is 10.
  --budget                      INT     Nodes to be added.                 Default is 20.
  --labeled-count               INT     Number of labeled instances.       Default is 100.
  --first-gcn-dimensions        INT     Graph level GCN 1st filters.       Default is 16.
  --second-gcn-dimensions       INT     Graph level GCN 2nd filters.       Default is 8.
  --first-dense-neurons         INT     SAGE aggregator neurons.           Default is 16.
  --second-dense-neurons        INT     SAGE attention neurons.            Default is 4.
  --macro-gcn-dimensions        INT     Macro level GCN neurons.           Default is 16.
  --weight-decay                FLOAT   Weight decay of Adam.              Defatul is 5*10^-5.
  --gamma                       FLOAT   Regularization parameter.          Default is 10^-5.
  --learning-rate               FLOAT   Adam learning rate.                Default is 0.01.

Examples

The following commands learn a model and score on the unlabaled instances. Training a model on the default dataset:

python src/main.py

Training each SEAL-CI model for a 100 epochs.

python src/main.py --epochs 100

Changing the budget size.

python src/main.py --budget 200

You might also like...
Unofficial PyTorch Implementation of AHDRNet (CVPR 2019)
Unofficial PyTorch Implementation of AHDRNet (CVPR 2019)

AHDRNet-PyTorch This is the PyTorch implementation of Attention-guided Network for Ghost-free High Dynamic Range Imaging (CVPR 2019). The official cod

This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

An implementation of
An implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019).

MixHop and N-GCN ⠀ A PyTorch implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019)

[CIKM 2019] Code and dataset for "Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction"

FiGNN for CTR prediction The code and data for our paper in CIKM2019: Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Predicti

Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

gHHC Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, D

《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)
《A-CNN: Annularly Convolutional Neural Networks on Point Clouds》(2019)

A-CNN: Annularly Convolutional Neural Networks on Point Clouds Created by Artem Komarichev, Zichun Zhong, Jing Hua from Department of Computer Science

《Deep Single Portrait Image Relighting》(ICCV 2019)

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find

《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Official repository for Jia, Raghunathan, Göksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Certified Robustness to Adversarial Word Substitutions This is the official GitHub repository for the following paper: Certified Robustness to Adversa

Comments
  • question about python-cluster and python-scatter

    question about python-cluster and python-scatter

    Hello, I failed to build python-cluster 1.2.4 and python-scatter 1.1.2 with pytorch 0.4.1

    It seems that python-scatter 1.0.4 can fit pytorch 0.4.1 However, I cant find proper verision for python-cluster

    Thank you!

    opened by gyc913 1
  • 关于  RuntimeError: index 145 is out of bounds for dimension 0 with size 1 的报错

    关于 RuntimeError: index 145 is out of bounds for dimension 0 with size 1 的报错

    您好,我在运行您的代码的时候报错 RuntimeError: index 145 is out of bounds for dimension 0 with size 1, 提示错误可能出现在node_features_1 = torch.nn.functional.relu(self.graph_convolution_1(features, edges))这一句处,涉及scatter.py。查了很久的资料,都没有解决。请问您知道是什么问题导致的吗?

    opened by heyjiege 0
  • The details about json file

    The details about json file

    Hi, I have an question about the json file. In the graph folder, every json file is a dictionary include label,feature and edge, the feature is displayed by the index of the node, while the key is "cc_XX" and the "deg_4", so what does the "cc_XX" stand for? When I build my own dataset, how can I obtain the "cc_XX".

    opened by ChenTao2017110 0
Releases(v_001)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
A library for augmentation of a YOLO-formated dataset

YOLO Dataset Augmentation lib Инструкция по использованию этой библиотеки Запуск всех файлов осуществлять из консоли. GoogleCrawl_to_Dataset.py Это ск

Egor Orel 1 Dec 10, 2022
[ICLR 2022] Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics

CPDeform Code and data for paper Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics at ICLR 2022 (Spotlight). @InProceed

(Lester) Sizhe Li 29 Nov 29, 2022
repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments

repro_eval repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments. The measures were d

IR Group at Technische Hochschule Köln 9 May 25, 2022
ICCV2021 Expert-Goal Trajectory Prediction

ICCV 2021: Where are you heading? Dynamic Trajectory Prediction with Expert Goal Examples This repository contains the code for the paper Where are yo

hz 21 Dec 12, 2022
A map update dataset and benchmark

MUNO21 MUNO21 is a dataset and benchmark for machine learning methods that automatically update and maintain digital street map datasets. Previous dat

16 Nov 30, 2022
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

阿才 73 Dec 16, 2022
ATAC: Adversarially Trained Actor Critic

ATAC: Adversarially Trained Actor Critic Adversarially Trained Actor Critic for Offline Reinforcement Learning by Ching-An Cheng*, Tengyang Xie*, Nan

Microsoft 41 Dec 08, 2022
Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)“.

Artifact • Reproduce Bugs • Quick Start • Installation • Extend Tzer Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation This is the s

12 Dec 29, 2022
A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries.

Yolo-Powered-Detector A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries

Luke Wilson 1 Dec 03, 2021
Official implementation of the method ContIG, for self-supervised learning from medical imaging with genomics

ContIG: Self-supervised Multimodal Contrastive Learning for Medical Imaging with Genetics This is the code implementation of the paper "ContIG: Self-s

Digital Health & Machine Learning 22 Dec 13, 2022
Image-Stitching - Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm

About The Project Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm (Random Sample Consensus). Author: Andreas P

Andreas Panayiotou 3 Jan 03, 2023
code for "Self-supervised edge features for improved Graph Neural Network training",

Self-supervised edge features for improved Graph Neural Network training Data availability: Here is a link to the raw data for the organoids dataset.

Neal Ravindra 23 Dec 02, 2022
An efficient framework for reinforcement learning.

rl: An efficient framework for reinforcement learning Requirements Introduction PPO Test Requirements name version Python =3.7 numpy =1.19 torch =1

16 Nov 30, 2022
Contrastive Feature Loss for Image Prediction

Contrastive Feature Loss for Image Prediction We provide a PyTorch implementation of our contrastive feature loss presented in: Contrastive Feature Lo

Alex Andonian 44 Oct 05, 2022
A copy of Ares that costs 30 fucking dollars.

Finalement, j'ai décidé d'abandonner cette idée, je me suis comporté comme un enfant qui été en colère. Comme m'ont dit certaines personnes j'ai des c

Bleu 24 Apr 14, 2022
Locationinfo - A script helps the user to show network information such as ip address

Description This script helps the user to show network information such as ip ad

Roxcoder 1 Dec 30, 2021
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021) Pytorch implementation of the ArTIST motion model. In this repo

Fatemeh 38 Dec 12, 2022
Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper

TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I

Phil Wang 146 Dec 06, 2022
Official Implementation of LARGE: Latent-Based Regression through GAN Semantics

LARGE: Latent-Based Regression through GAN Semantics [Project Website] [Google Colab] [Paper] LARGE: Latent-Based Regression through GAN Semantics Yot

83 Dec 06, 2022
Official implementation of MSR-GCN (ICCV 2021 paper)

MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup

LevonDang 42 Nov 07, 2022