An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Related tags

Deep LearningAFGRL
Overview

Augmentation-Free Self-Supervised Learning on Graphs

An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted at AAAI 2022.

Overview

Inspired by the recent success of self-supervised methods applied on images, self-supervised learning on graph structured data has seen rapid growth especially centered on augmentation-based contrastive methods. However, we argue that without carefully designed augmentation techniques, augmentations on graphs may behave arbitrarily in that the underlying semantics of graphs can drastically change. As a consequence, the performance of existing augmentation-based methods is highly dependent on the choice of augmentation scheme, i.e., hyperparameters associated with augmentations. In this paper, we propose a novel augmentation-free self-supervised learning framework for graphs, named AFGRL. Specifically, we generate an alternative view of a graph by discovering nodes that share the local structural information and the global semantics with the graph. Extensive experiments towards various node-level tasks, i.e., node classification, clustering, and similarity search on various real-world datasets demonstrate the superiority of AFGRL.

Augmentations on images keep the underlying semantics, whereas augmentations on graphs may unexpectedly change the semantics.

Requirements

  • Python version: 3.7.10
  • Pytorch version: 1.8.1
  • torch-geometric version: 1.7.0
  • faiss: 1.7.0

Hyperparameters

Following Options can be passed to main.py

--dataset: Name of the dataset. Supported names are: wikics, cs, computers, photo, and physics. Default is wikics.
usage example :--dataset wikics

--task: Name of the task. Supported names are: node, clustering, similarity. Default is node.
usage example :--task node

--layers: The number of units of each layer of the GNN. Default is [256]
usage example :--layers 256

--pred_hid: The number of hidden units of predictor. Default is [512]
usage example :--pred_hid 512

--topk: The number of neighbors for nearest neighborhood search. Default is 4.
usage example :--topk 4

--num_centroids: The number of centroids for K-means Clustering . Default is 100.
usage example :--num_centroids 100

--num_kmeans: The number of iterations for K-means Clustering . Default is 5.
usage example :--num_kmeans 5

How to Run

You can run the model with following options

  • To run node classification (reproduce Table 2 in paper)
sh run_node_classification.sh
  • To run node clustering (reproduce Table 3 in paper)
sh run_node_clustering.sh
  • To run similarity search (reproduce Table 4 in paper)
sh run_similarity_search.sh
  • or you can run the file with above mentioned hyperparameters
python main.py --embedder AFGRL --dataset wikics --task node --layers [1024] --pred_hid 2048 --lr 0.001 --topk 8
Owner
Namkyeong Lee
Namkyeong Lee
Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models

Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models This repo contains a barebones implementation for the atta

16 Dec 04, 2022
State of the Art Neural Networks for Generative Deep Learning

pyradox-generative State of the Art Neural Networks for Generative Deep Learning Table of Contents pyradox-generative Table of Contents Installation U

Ritvik Rastogi 8 Sep 29, 2022
Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022

PyCRE Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022 Dependencies This project is developed

<a href=[email protected]"> 7 May 06, 2022
Code to replicate the key results from Exploring the Limits of Out-of-Distribution Detection

Exploring the Limits of Out-of-Distribution Detection In this repository we're collecting replications for the key experiments in the Exploring the Li

Stanislav Fort 35 Jan 03, 2023
Perform zero-order Hankel Transform for an 1D array (float or real valued).

perform zero-order Hankel Transform for an 1D array (float or real valued). An discrete form of Parseval theorem is guaranteed. Suit for iterative problems.

1 Jan 17, 2022
Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT)

Semi-Supervised Semantic Segmentation with Cross-Consistency Training (CCT) Paper, Project Page This repo contains the official implementation of CVPR

Yassine 344 Dec 29, 2022
Paper: Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification

Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification T M Feroz Ali, Subhasis Chaudhuri, ICVGIP-20-21

T M Feroz Ali 3 Jun 17, 2022
ChatBot-Pytorch - A GPT-2 ChatBot implemented using Pytorch and Huggingface-transformers

ChatBot-Pytorch A GPT-2 ChatBot implemented using Pytorch and Huggingface-transf

ParZival 42 Dec 09, 2022
Pytorch implemenation of Stochastic Multi-Label Image-to-image Translation (SMIT)

SMIT: Stochastic Multi-Label Image-to-image Translation This repository provides a PyTorch implementation of SMIT. SMIT can stochastically translate a

Biomedical Computer Vision Group @ Uniandes 37 Mar 01, 2022
PyTorch implementation for SDEdit: Image Synthesis and Editing with Stochastic Differential Equations

SDEdit: Image Synthesis and Editing with Stochastic Differential Equations Project | Paper | Colab PyTorch implementation of SDEdit: Image Synthesis a

536 Jan 05, 2023
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Jia Research Lab 115 Dec 23, 2022
LightningFSL: Pytorch-Lightning implementations of Few-Shot Learning models.

LightningFSL: Few-Shot Learning with Pytorch-Lightning In this repo, a number of pytorch-lightning implementations of FSL algorithms are provided, inc

Xu Luo 76 Dec 11, 2022
A framework that allows people to write their own Rocket League bots.

YOU PROBABLY SHOULDN'T PULL THIS REPO Bot Makers Read This! If you just want to make a bot, you don't need to be here. Instead, start with one of thes

543 Dec 20, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift

This repository contains the official code of OSTAR in "Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift" (ICLR 2022).

Matthieu Kirchmeyer 5 Dec 06, 2022
Code for the Paper: Conditional Variational Capsule Network for Open Set Recognition

Conditional Variational Capsule Network for Open Set Recognition This repository hosts the official code related to "Conditional Variational Capsule N

Guglielmo Camporese 35 Nov 21, 2022
A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

Vikash Sehwag 65 Dec 19, 2022
ML-Ensemble – high performance ensemble learning

A Python library for high performance ensemble learning ML-Ensemble combines a Scikit-learn high-level API with a low-level computational graph framew

Sebastian Flennerhag 764 Dec 31, 2022
Library for fast text representation and classification.

fastText fastText is a library for efficient learning of word representations and sentence classification. Table of contents Resources Models Suppleme

Facebook Research 24.1k Jan 01, 2023
Model Serving Made Easy

The easiest way to build Machine Learning APIs BentoML makes moving trained ML models to production easy: Package models trained with any ML framework

BentoML 4.4k Jan 08, 2023