BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net

Overview

BraTS(Brain Tumour Segmentation) using V-Net

This project is an approach to detect brain tumours using BraTS 2016,2017 dataset.

Description

BraTS is a dataset which provides multimodal 3D brain MRIs annotated by experts. Each Magnetic Resonance Imaging(MRI) scan consists of 4 different modalities(Flair,T1w,t1gd,T2w). Expert annotations are provided in the form of segmentation masks to detect 3 classes of tumour - edema(ED),enhancing tumour(ET),necrotic and non-enhancing tumour(NET/NCR). The dataset is challenging in terms of the complex and heterogeneously-located targets. We use Volumetric Network(V-Net) which is a 3D Fully Convolutional Network(FCN) for segmentation of 3D medical images. We use Dice Loss as the objective function for the present scenario. Future implementation will include Hausdorff Loss for better boundary segmentations.



Fig 1: Brain Tumour Segmentation

Getting Started

Dataset

4D Multimodal MRI dataset

The dataset contains 750 4D volumes of MRI scans(484 for training and 266 for testing). Since the test set is not publicly available we split the train set into train-val-split. We use 400 scans for training and validation and the rest 84 for evaluation. No data augmentations are applied to the data. The data is stored in NIfTI file format(.nii.gz). A 4D tensor of shape (4,150,240,240) is obtained after reading the data where the 1st dimension denotes the modality(Flair,T1w,t1gd,T2w), 2nd dimension denotes the number of slices and the 3rd and 4th dimesion denotes the width and height respectively. We crop each modality to (32,128,128) for computational purpose and stack each modality along the 0th axis. The segmentation masks contain 3 classes - ED,ET,NET/NCR. We resize and stack each class to form a tensor of shape (3,32,128,128).

Experimental Details

Loss functions

We use Dice loss as the objective function to train the model.




Training

We use Adam optimizer for optimizing the objective function. The learning rate is initially set to 0.001 and halved after every 100 epochs. We train the network until 300 epochs and the best weights are saved accordingly. We use NVIDIA Tesla P100 with 16 GB of VRAM to train the model.

Quantative Results

We evaluate the model on the basis of Dice Score Coefficient(DSC) and Intersection over Union(IoU) over three classes (WT+TC+ET).




Qualitative Results



Fig 1: Brain Complete Tumour Segmentation(blue indicates ground truth segmentation and red indicates predicted segmentation)

Statistical Inference



Fig 1: Validation Dice Score Coefficient(DSC)


Fig 2: Validation Dice Loss

Dependencies

  • SimpleITK 2.0.2
  • Pytorch 1.8.0
  • CUDA 10.2
  • TensorBoard 2.5.0

Installing

 pip install SimpleITK
 pip install tensorboard

Execution

 python train.py

train.py contains code for training the model and saving the weights.

loader.py contains code for dataloading and train-test split.

utils.py contains utility functions.

evaluate.py contains code for evaluation.

Acknowledgments

[1] BraTS 3D UNet

[2] VNet

Owner
Rituraj Dutta
Passionate about AI and Deep Learning
Rituraj Dutta
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Jan 01, 2023
Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images

Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images [ICCV 2021] © Mahmood Lab - This code is made avail

Mahmood Lab @ Harvard/BWH 63 Dec 01, 2022
DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment

DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment This repository is related to the paper DEEPAGÉ: Answering Questions in Por

0 Dec 10, 2021
Negative Interactions for Improved Collaborative Filtering:

Negative Interactions for Improved Collaborative Filtering: Don’t go Deeper, go Higher This notebook provides an implementation in Python 3 of the alg

Harald Steck 21 Mar 05, 2022
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which outperforms the paper's (Hessel et al. 2017) results on 40% of tested games while using 20x less dat

Dominik Schmidt 31 Dec 21, 2022
The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021)

The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021) Arash Vahdat*   ·   Karsten Kreis*   ·  

NVIDIA Research Projects 238 Jan 02, 2023
Introduction to Statistics and Basics of Mathematics for Data Science - The Hacker's Way

HackerMath for Machine Learning “Study hard what interests you the most in the most undisciplined, irreverent and original manner possible.” ― Richard

Amit Kapoor 1.4k Dec 22, 2022
Instance Semantic Segmentation List

Instance Semantic Segmentation List This repository contains lists of state-or-art instance semantic segmentation works. Papers and resources are list

bighead 87 Mar 06, 2022
Code for Paper: Self-supervised Learning of Motion Capture

Self-supervised Learning of Motion Capture This is code for the paper: Hsiao-Yu Fish Tung, Hsiao-Wei Tung, Ersin Yumer, Katerina Fragkiadaki, Self-sup

Hsiao-Yu Fish Tung 87 Jul 25, 2022
Annotated, understandable, and visually interpretable PyTorch implementations of: VAE, BIRVAE, NSGAN, MMGAN, WGAN, WGANGP, LSGAN, DRAGAN, BEGAN, RaGAN, InfoGAN, fGAN, FisherGAN

Overview PyTorch 0.4.1 | Python 3.6.5 Annotated implementations with comparative introductions for minimax, non-saturating, wasserstein, wasserstein g

Shayne O'Brien 471 Dec 16, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
NeROIC: Neural Object Capture and Rendering from Online Image Collections

NeROIC: Neural Object Capture and Rendering from Online Image Collections This repository is for the source code for the paper NeROIC: Neural Object C

Snap Research 647 Dec 27, 2022
An easier way to build neural search on the cloud

An easier way to build neural search on the cloud Jina is a deep learning-powered search framework for building cross-/multi-modal search systems (e.g

Jina AI 17k Jan 02, 2023
Text-Based Ideal Points

Text-Based Ideal Points Source code for the paper: Text-Based Ideal Points by Keyon Vafa, Suresh Naidu, and David Blei (ACL 2020). Update (June 29, 20

Keyon Vafa 37 Oct 09, 2022
Official implementation of "Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets" (CVPR2021)

Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets This is the official implementation of "Towards Good Pract

Sanja Fidler's Lab 52 Nov 22, 2022
Chess reinforcement learning by AlphaGo Zero methods.

About Chess reinforcement learning by AlphaGo Zero methods. This project is based on these main resources: DeepMind's Oct 19th publication: Mastering

Samuel 2k Dec 29, 2022
PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".

Full-Body Visual Self-Modeling of Robot Morphologies Boyuan Chen, Robert Kwiatkowskig, Carl Vondrick, Hod Lipson Columbia University Project Website |

Boyuan Chen 32 Jan 02, 2023
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
Implementation of ETSformer, state of the art time-series Transformer, in Pytorch

ETSformer - Pytorch Implementation of ETSformer, state of the art time-series Transformer, in Pytorch Install $ pip install etsformer-pytorch Usage im

Phil Wang 121 Dec 30, 2022
Domain Generalization with MixStyle, ICLR'21.

MixStyle This repo contains the code of our ICLR'21 paper, "Domain Generalization with MixStyle". The OpenReview link is https://openreview.net/forum?

Kaiyang 208 Dec 28, 2022