PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".

Overview

Full-Body Visual Self-Modeling of Robot Morphologies

Boyuan Chen, Robert Kwiatkowskig, Carl Vondrick, Hod Lipson
Columbia University

Project Website | Video | Paper

Overview

This repo contains the PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".

teaser

Citation

If you find our paper or codebase helpful, please consider citing:

@article{chen2021morphology,
  title={Full-Body Visual Self-Modeling of Robot Morphologies},
  author={Chen, Boyuan and Kwiatkowskig, Robert and Vondrick, Carl and Lipson, Hod},
  journal={arXiv preprint arXiv:2111.06389},
  year={2021}
}

Content

Installation

Our code has been tested on Ubuntu 18.04 with CUDA 11.0. Create a python3.6 virtual environment and install the dependencies.

virtualenv -p /usr/bin/python3.6 env-visual-selfmodeling
source env-visual-selfmodeling/bin/activate
cd visual-selfmodeling
pip install -r requirements.txt

You may also need to run the following two lines to specify the correct cuda path for pycuda and nvcc.

export PATH=/usr/local/cuda-11.0/bin:$PATH
export PATH=/usr/local/cuda-11.0/bin:${PATH:+${PATH}}

To run the evaluation metrics, please install the additional package with the following line.

python setup.py build_ext --inplace

Data Preparation

Run the following commands to generate the simulated data in Pybullet.

cd visual-selfmodeling
python sim.py

This will generate the mesh files in a folder named saved_meshes under current directory. A robot_state.json file will also be generated in saved_meshes folder to store the corresponding joint angles.

Then generate the pointcloud with normals.

ipython3
from utils import common
common.convert_ply_to_xyzn(folder='./saved_meshes')

About Configs and Logs

Before training and evaluation, we first introduce the configuration and logging structure.

Configs: all the specific parameters used for training and evaluation are indicated in ./configs/state_condition/config1.yaml. If you would like to play with other parameters, feel free to copy the existing config file and modify it. You will then just need to change the config file path in the following training steps to point to the new configuration file.

To train the self-model which also predicts the end effector position together with our visual self-model, please use ./configs/state_condition_kinematic/config1.yaml.

To train the self-model which only predicts the end effector from scratch, without out visual self-model, please use ./configs/state_condition_kinematic_scratch/config1.yaml.

If you save the data to other directories, please make sure the data_filepath argument in each config file points to the correct path.

Logs: both the training and evaluation results will be saved in the log folder for each experiment. The log folders will be located under ./scripts folder. The last digit in the logs folder indicates the random seed. Inside the logs folder, the structure and contents are:

```
\logs_True_False_False_image_conv2d-encoder-decoder_True_{output_representation}_{seed}
    \lightning_logs
        \checkpoints          [saved checkpoint]
        \version_0            [training stats]
    \predictions              [complete predicted meshes before normalization]
    \predictions_denormalized [complete predicted meshes after normalization]
```

Training

To train our visual self-model, run the following command.

cd scripts;
CUDA_VISIBLE_DEVICES=0 python ../main.py ../configs/state_condition/config1.yaml NA;

To use our pre-trained self-model to train a small network to predict end-effector position, run the following command. For this step, please uncomment the validation code in models.py (line 143-158, line 202-204, and line 225-231). Please only uncomment then for this particular step.

cd scripts;
CUDA_VISIBLE_DEVICES=0 python ../main.py ../configs/state_condition_kinematic/config1.yaml kinematic ./logs_state-condition_new-global-siren-sdf_1/lightning_logs/version_0/checkpoints/;

To train the baseline model that predicts end-effector position from scratch, without using our visual self-model, run the following command. For this step, please uncomment the validation code in models.py (line 143-158, line 202-204, and line 225-231). Please only uncomment then for this particular step.

CUDA_VISIBLE_DEVICES=0 python ../main.py ../configs/state_condition_kinematic_scratch/config1.yaml kinematic-scratch NA;

Evaluation

To evaluate the predicted meshes and compare with baselines, run the following commands.

cd scripts;
CUDA_VISIBLE_DEVICES=0 python ../eval.py ../configs/state_condition/config1.yaml ./logs_state-condition_new-global-siren-sdf_1/lightning_logs/version_0/checkpoints/ eval-state-condition;

cd utils;
python eval_mesh.py ../configs/state_condition/config1.yaml model;
python eval_mesh.py ../configs/state_condition/config1.yaml nearest-neighbor;
python eval_mesh.py ../configs/state_condition/config1.yaml random;

CUDA_VISIBLE_DEVICES=0 python ../eval.py ../configs/state_condition_kinematic/config1.yaml ./logs_state-condition-kinematic_new-global-siren-sdf_1/lightning_logs/version_0/checkpoints/ eval-kinematic ./logs_state-condition_new-global-siren-sdf_1/lightning_logs/version_0/checkpoints/;

CUDA_VISIBLE_DEVICES=4 python ../eval.py ../configs/state_condition_kinematic_scratch/config1.yaml ./logs_state-condition-kinematic-scratch_new-global-siren-sdf_1/lightning_logs/version_0/checkpoints/ eval-kinematic;

License

This repository is released under the MIT license. See LICENSE for additional details.

Reference

Owner
Boyuan Chen
CS Ph.D. student at Columbia University.
Boyuan Chen
Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch

Next Word Prediction Keywords : Streamlit, BertTokenizer, BertForMaskedLM, Pytorch 🎬 Project Demo ✔ Application is hosted on Streamlit. You can see t

Vivek7 3 Aug 26, 2022
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image.

CoReNet CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image. It produces coherent reconstructions, where all objec

Google Research 80 Dec 25, 2022
Using Tensorflow Object Detection API to detect Waymo open dataset

Waymo-2D-Object-Detection Using Tensorflow Object Detection API to detect Waymo open dataset Result CenterNet Training Loss SSD ResNet Training Loss C

76 Dec 12, 2022
This repository is related to an Arabic tutorial, within the tutorial we discuss the common data structure and algorithms and their worst and best case for each, then implement the code using Python.

Data Structure and Algorithms with Python This repository is related to the Arabic tutorial here, within the tutorial we discuss the common data struc

Mohamed Ayman 33 Dec 02, 2022
JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces

JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces JAXMAPP is a JAX-based library for multi-agent path planning (MAPP) in c

OMRON SINIC X 24 Dec 28, 2022
Simple sinc interpolation in PyTorch.

Kazane: simple sinc interpolation for 1D signal in PyTorch Kazane utilize FFT based convolution to provide fast sinc interpolation for 1D signal when

Chin-Yun Yu 10 May 03, 2022
Pytorch implementation of face attention network

Face Attention Network Pytorch implementation of face attention network as described in Face Attention Network: An Effective Face Detector for the Occ

Hooks 312 Dec 09, 2022
2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation

2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation Authors: Ge-Peng Ji*, Yu-Cheng Chou*, Deng-Ping Fan, Geng Che

Ge-Peng Ji (Daniel) 85 Dec 30, 2022
Implementation of PyTorch-based multi-task pre-trained models

mtdp Library containing implementation related to the research paper "Multi-task pre-training of deep neural networks for digital pathology" (Mormont

Romain Mormont 27 Oct 14, 2022
Pytorch code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral)

DPFM Code for "DPFM: Deep Partial Functional Maps" - 3DV 2021 (Oral) Installation This implementation runs on python = 3.7, use pip to install depend

Souhaib Attaiki 29 Oct 03, 2022
A Broad Study on the Transferability of Visual Representations with Contrastive Learning

A Broad Study on the Transferability of Visual Representations with Contrastive Learning This repository contains code for the paper: A Broad Study on

Ashraful Islam 29 Nov 09, 2022
The Empirical Investigation of Representation Learning for Imitation (EIRLI)

The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Center for Human-Compatible AI 31 Nov 06, 2022
Official repository of "BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment"

BasicVSR_PlusPlus (CVPR 2022) [Paper] [Project Page] [Code] This is the official repository for BasicVSR++. Please feel free to raise issue related to

Kelvin C.K. Chan 227 Jan 01, 2023
Metadata-Extractor - Metadata Extractor Script can be used to read in exif metadata

Metadata Extractor The exifextract script can be used to read in exif metadata f

1 Feb 16, 2022
A small fun project using python OpenCV, mediapipe, and pydirectinput

Here I tried a small fun project using python OpenCV, mediapipe, and pydirectinput. Here we can control moves car game when yellow color come to right box (press key 'd') left box (press key 'a') lef

Sameh Elisha 3 Nov 17, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

🚀 An end-to-end ML applications using PyTorch, W&B, FastAPI, Docker, Streamlit and Heroku

Made With ML 82 Jun 26, 2022
Implementation of Fast Transformer in Pytorch

Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install

Phil Wang 167 Dec 27, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

High performance distributed framework for training deep learning recommendation models based on PyTorch.

340 Dec 30, 2022