PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".

Overview

Full-Body Visual Self-Modeling of Robot Morphologies

Boyuan Chen, Robert Kwiatkowskig, Carl Vondrick, Hod Lipson
Columbia University

Project Website | Video | Paper

Overview

This repo contains the PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".

teaser

Citation

If you find our paper or codebase helpful, please consider citing:

@article{chen2021morphology,
  title={Full-Body Visual Self-Modeling of Robot Morphologies},
  author={Chen, Boyuan and Kwiatkowskig, Robert and Vondrick, Carl and Lipson, Hod},
  journal={arXiv preprint arXiv:2111.06389},
  year={2021}
}

Content

Installation

Our code has been tested on Ubuntu 18.04 with CUDA 11.0. Create a python3.6 virtual environment and install the dependencies.

virtualenv -p /usr/bin/python3.6 env-visual-selfmodeling
source env-visual-selfmodeling/bin/activate
cd visual-selfmodeling
pip install -r requirements.txt

You may also need to run the following two lines to specify the correct cuda path for pycuda and nvcc.

export PATH=/usr/local/cuda-11.0/bin:$PATH
export PATH=/usr/local/cuda-11.0/bin:${PATH:+${PATH}}

To run the evaluation metrics, please install the additional package with the following line.

python setup.py build_ext --inplace

Data Preparation

Run the following commands to generate the simulated data in Pybullet.

cd visual-selfmodeling
python sim.py

This will generate the mesh files in a folder named saved_meshes under current directory. A robot_state.json file will also be generated in saved_meshes folder to store the corresponding joint angles.

Then generate the pointcloud with normals.

ipython3
from utils import common
common.convert_ply_to_xyzn(folder='./saved_meshes')

About Configs and Logs

Before training and evaluation, we first introduce the configuration and logging structure.

Configs: all the specific parameters used for training and evaluation are indicated in ./configs/state_condition/config1.yaml. If you would like to play with other parameters, feel free to copy the existing config file and modify it. You will then just need to change the config file path in the following training steps to point to the new configuration file.

To train the self-model which also predicts the end effector position together with our visual self-model, please use ./configs/state_condition_kinematic/config1.yaml.

To train the self-model which only predicts the end effector from scratch, without out visual self-model, please use ./configs/state_condition_kinematic_scratch/config1.yaml.

If you save the data to other directories, please make sure the data_filepath argument in each config file points to the correct path.

Logs: both the training and evaluation results will be saved in the log folder for each experiment. The log folders will be located under ./scripts folder. The last digit in the logs folder indicates the random seed. Inside the logs folder, the structure and contents are:

```
\logs_True_False_False_image_conv2d-encoder-decoder_True_{output_representation}_{seed}
    \lightning_logs
        \checkpoints          [saved checkpoint]
        \version_0            [training stats]
    \predictions              [complete predicted meshes before normalization]
    \predictions_denormalized [complete predicted meshes after normalization]
```

Training

To train our visual self-model, run the following command.

cd scripts;
CUDA_VISIBLE_DEVICES=0 python ../main.py ../configs/state_condition/config1.yaml NA;

To use our pre-trained self-model to train a small network to predict end-effector position, run the following command. For this step, please uncomment the validation code in models.py (line 143-158, line 202-204, and line 225-231). Please only uncomment then for this particular step.

cd scripts;
CUDA_VISIBLE_DEVICES=0 python ../main.py ../configs/state_condition_kinematic/config1.yaml kinematic ./logs_state-condition_new-global-siren-sdf_1/lightning_logs/version_0/checkpoints/;

To train the baseline model that predicts end-effector position from scratch, without using our visual self-model, run the following command. For this step, please uncomment the validation code in models.py (line 143-158, line 202-204, and line 225-231). Please only uncomment then for this particular step.

CUDA_VISIBLE_DEVICES=0 python ../main.py ../configs/state_condition_kinematic_scratch/config1.yaml kinematic-scratch NA;

Evaluation

To evaluate the predicted meshes and compare with baselines, run the following commands.

cd scripts;
CUDA_VISIBLE_DEVICES=0 python ../eval.py ../configs/state_condition/config1.yaml ./logs_state-condition_new-global-siren-sdf_1/lightning_logs/version_0/checkpoints/ eval-state-condition;

cd utils;
python eval_mesh.py ../configs/state_condition/config1.yaml model;
python eval_mesh.py ../configs/state_condition/config1.yaml nearest-neighbor;
python eval_mesh.py ../configs/state_condition/config1.yaml random;

CUDA_VISIBLE_DEVICES=0 python ../eval.py ../configs/state_condition_kinematic/config1.yaml ./logs_state-condition-kinematic_new-global-siren-sdf_1/lightning_logs/version_0/checkpoints/ eval-kinematic ./logs_state-condition_new-global-siren-sdf_1/lightning_logs/version_0/checkpoints/;

CUDA_VISIBLE_DEVICES=4 python ../eval.py ../configs/state_condition_kinematic_scratch/config1.yaml ./logs_state-condition-kinematic-scratch_new-global-siren-sdf_1/lightning_logs/version_0/checkpoints/ eval-kinematic;

License

This repository is released under the MIT license. See LICENSE for additional details.

Reference

Owner
Boyuan Chen
CS Ph.D. student at Columbia University.
Boyuan Chen
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply

Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and

Arun S. Maiya 1.1k Jan 02, 2023
LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations

LIMEcraft LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations The LIMEcraft algorithm is an explanatory method based on

MI^2 DataLab 4 Aug 01, 2022
Tiny Kinetics-400 for test

Kinetics-400迷你数据集 English | 简体中文 该数据集旨在解决的问题:参照Kinetics-400数据格式,训练基于自己数据的视频理解模型。 数据集介绍 Kinetics-400是视频领域benchmark常用数据集,详细介绍可以参考其官方网站Kinetics。整个数据集包含40

38 Jan 06, 2023
PyAF is an Open Source Python library for Automatic Time Series Forecasting built on top of popular pydata modules.

PyAF (Python Automatic Forecasting) PyAF is an Open Source Python library for Automatic Forecasting built on top of popular data science python module

CARME Antoine 405 Jan 02, 2023
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022
An energy estimator for eyeriss-like DNN hardware accelerator

Energy-Estimator-for-Eyeriss-like-Architecture- An energy estimator for eyeriss-like DNN hardware accelerator This is an energy estimator for eyeriss-

HEXIN BAO 2 Mar 26, 2022
Keyword spotting on Arm Cortex-M Microcontrollers

Keyword spotting for Microcontrollers This repository consists of the tensorflow models and training scripts used in the paper: Hello Edge: Keyword sp

Arm Software 1k Dec 30, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region (Paper and DataSet). [New] Note that all the emails about the download permission o

Healthcare Intelligence Laboratory 71 Dec 22, 2022
Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations

ODE GAN (Prototype) in PyTorch Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary

Somshubra Majumdar 15 Feb 10, 2022
A little Python application to auto tag your photos with the power of machine learning.

Tag Machine A little Python application to auto tag your photos with the power of machine learning. Report a bug or request a feature Table of Content

Florian Torres 14 Dec 21, 2022
Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data recorded in NumPy array

shindo.py Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data stored in NumPy array Introduction Japa

RR_Inyo 3 Sep 23, 2022
A Kernel fuzzer focusing on race bugs

Razzer: Finding kernel race bugs through fuzzing Environment setup $ source scripts/envsetup.sh scripts/envsetup.sh sets up necessary environment var

Systems and Software Security Lab at Seoul National University (SNU) 328 Dec 26, 2022
ALFRED - A Benchmark for Interpreting Grounded Instructions for Everyday Tasks

ALFRED A Benchmark for Interpreting Grounded Instructions for Everyday Tasks Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han,

ALFRED 204 Dec 15, 2022
Monify: an Expense tracker Program implemented in a Graphical User Interface that allows users to keep track of their expenses

💳 MONIFY (EXPENSE TRACKER PRO) 💳 Description Monify is an Expense tracker Program implemented in a Graphical User Interface allows users to add inco

Moyosore Weke 1 Dec 14, 2021
Functional deep learning

Pipeline abstractions for deep learning. Full documentation here: https://lf1-io.github.io/padl/ PADL: is a pipeline builder for PyTorch. may be used

LF1 101 Nov 09, 2022
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

Tiep M. H. 1 Nov 20, 2021
🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series

🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series (optical and radar) The PASTIS Dataset Dataset presentation PASTIS is a benchmark dataset for

86 Jan 04, 2023
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

flow-dev 2 Aug 21, 2022
Pytorch implementation of Generative Models as Distributions of Functions 🌿

Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function

Emilien Dupont 117 Dec 29, 2022
Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations

TopClus The source code used for Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations, published in WWW 2022. Requ

Yu Meng 63 Dec 18, 2022