An energy estimator for eyeriss-like DNN hardware accelerator

Overview

Energy-Estimator-for-Eyeriss-like-Architecture-

An energy estimator for eyeriss-like DNN hardware accelerator

This is an energy estimator for eyeriss-like architecture utilizing Row-Stationary dataflow which is a DNN hardware accelerator created by works from Vivienne Sze’s group in MIT. You can refer to their original works in github, Y. N. Wu, V. Sze, J. S. Emer, “An Architecture-Level Energy and Area Estimator for Processing-In-Memory Accelerator Designs,” IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), April 2020, http://eyeriss.mit.edu/, etc. Thanks to their contribution in DNN accelerator and energy efficient design.

image

Eyeriss-like architecture utilizes row-stationary dataflow in order to fully explore data reuse including convolutional reuse, ifmap reuse and filter reuse. In general, the energy breakdown in each DNN layer can be separated in terms of computation and memory access (or data transfer). image

Computation Energy : Performing MAC operations. Data Energy : The number of bits accessed at each memory level is calculated based on the dataflow and scaled by the hardware energy cost of accessing one bit at that memory level. The data energy is the summation of each memory hierarchy (DRAM, NoC, Global Buffer, RF) or each data type (ifmap, weight, partial sum). image

  1. Quantization Bitwidth Energy scaling in computation : linear for single operand scaling. Quadratic for two operands scaling. Energy scaling in data access : Linear scaling for any data type in any memory hierarchy.
  2. Pruning on filters (weights) Energy scaling in computation : Skip MAC operations according to pruning ratio. (Linear scaling) Energy scaling in data access : Linear scaling for weight access. image

Assumptions: Initial image input and weights in each layer should be first read from DRAM (external off-chip memory). Global Buffer is big enough to store any amount of datum and intermediate numbers. NoC has high-performance and high throughput with non-blocking broadcasting and inter-PE forwarding capability which supports multiple information transactions simultaneously. No data compression technique is considered in estimator design. Each PE is able to recognize information transferred among NoCs so that only those in need could receive data. Sparsity of weights and activations aren’t considered. Register File inside each PE only has the capacity to store one row of weights, one row of ifmap and one partial sum which means that we won’t take the capacity of RF into account. (A pity in this energy estimator) Ifmap and ofmap of each layer should be read from or written back into DRAM for external read operations. Once a data value is read from one memory level and then written into another memory level, the energy consumption of this transaction is always decided by the higher-cost level and only regarded as a single operation. Data transfer could happen directly between any 2 memory levels. This estimator is only applied to 2D systolic PE arrays. Partial sum and ofmap of one layer have the same bitwidth as activations. Maxpooling, Relu and LRN are not taken into account with respect to energy estimation. (little impact on total estimation) In order to make full use of data reuse (convolutional reuse and ifmap reuse), apart from row-stationary dataflow, scheduling algorithm will try to avoid reading ifmaps as much as possible. Once a channel of ifmap is kept inside the RF, the computation will be executed across the corresponding channel of entire filters in each layer.

Example analysis : Hardware Architecture : Eyeriss PE size : 12*14, 2D Dataflow : Row Stationary DNN Model : AlexNet (5 conv layers, 3 FC layers) Initial Input : single image from ImageNet Additional Attributes : Pruning and Quantization (You can revise your own pruning ratio and bitwidth of weight and activation in my source code) Everything is not hard-coded !

A pity ! (future works to do) 3D PE arrays. Memory size is considered in scheduling algorithm to accommodate more intermediate datum in low-cost level without writing back to high-cost level. Possible I/O data compression. (encoder, decoder) Possible sparsity optimization. (zero-gated MAC) Elaborate operation with specific arguments like random read, repeated write, constant read, etc. The impact of memory size, spatial distribution, location can be taken into account when we try to improve precision of our energy estimator. For example, the spatial distribution between two PEs can be characterized by Manhattan distance which can be used to scale the energy consumption of data forwarding in NoC.

If you have any questions or troubles please contact me. I'd also like to listen to your advice and opinions!

Owner
HEXIN BAO
UESTC Bachelor EE NUS Master ECE Future unknown
HEXIN BAO
E2VID_ROS - E2VID_ROS: E2VID to a real-time system

E2VID_ROS Introduce We extend E2VID to a real-time system. Because Python ROS ca

Robin Shaun 7 Apr 17, 2022
A big endian Gentoo port developed on a Pine64.org RockPro64

Gentoo-aarch64_be A big endian Gentoo port developed on a Pine64.org RockPro64 The endian wars are over... little endian won. As a result, it is incre

Rory Bolt 6 Dec 07, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Collie do

ShopRunner 96 Dec 29, 2022
A Python library for adversarial machine learning focusing on benchmarking adversarial robustness.

ARES This repository contains the code for ARES (Adversarial Robustness Evaluation for Safety), a Python library for adversarial machine learning rese

Tsinghua Machine Learning Group 377 Dec 20, 2022
This is the repo of the manuscript "Dual-branch Attention-In-Attention Transformer for speech enhancement"

DB-AIAT: A Dual-branch attention-in-attention transformer for single-channel SE

Guochen Yu 68 Dec 16, 2022
[AAAI 2021] MVFNet: Multi-View Fusion Network for Efficient Video Recognition

MVFNet: Multi-View Fusion Network for Efficient Video Recognition (AAAI 2021) Overview We release the code of the MVFNet (Multi-View Fusion Network).

Wenhao Wu 114 Nov 27, 2022
Framework that uses artificial intelligence applied to mathematical models to make predictions

LiconIA Framework that uses artificial intelligence applied to mathematical models to make predictions Interface Overview Table of contents [TOC] 1 Ar

4 Jun 20, 2021
This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murder rates etc.

Gun-Laws-Classifier This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murde

Awais Saleem 1 Jan 20, 2022
Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of images as "pixels"

picinpics Script that receives an Image (original) and a set of images to be used as "pixels" in reconstruction of the Original image using the set of

RodrigoCMoraes 1 Oct 24, 2021
ANEA: Distant Supervision for Low-Resource Named Entity Recognition

ANEA: Distant Supervision for Low-Resource Named Entity Recognition ANEA is a tool to automatically annotate named entities in unlabeled text based on

Saarland University Spoken Language Systems Group 15 Mar 30, 2022
Clustering is a popular approach to detect patterns in unlabeled data

Visual Clustering Clustering is a popular approach to detect patterns in unlabeled data. Existing clustering methods typically treat samples in a data

Tarek Naous 24 Nov 11, 2022
Self-Supervised Learning

Self-Supervised Learning Features self_supervised offers features like modular framework support for multi-gpu training using PyTorch Lightning easy t

Robin 1 Dec 14, 2021
Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr\"om Method (NeurIPS 2021)

Skyformer This repository is the official implementation of Skyformer: Remodel Self-Attention with Gaussian Kernel and Nystr"om Method (NeurIPS 2021).

Qi Zeng 46 Sep 20, 2022
Experiments on Flood Segmentation on Sentinel-1 SAR Imagery with Cyclical Pseudo Labeling and Noisy Student Training

Flood Detection Challenge This repository contains code for our submission to the ETCI 2021 Competition on Flood Detection (Winning Solution #2). Acco

Siddha Ganju 108 Dec 28, 2022
OntoProtein: Protein Pretraining With Ontology Embedding

OntoProtein This is the implement of the paper "OntoProtein: Protein Pretraining With Ontology Embedding". OntoProtein is an effective method that mak

ZJUNLP 80 Dec 14, 2022
It's like Shape Editor in Maya but works with skeletons (transforms).

Skeleposer What is Skeleposer? Briefly, it's like Shape Editor in Maya, but works with transforms and joints. It can be used to make complex facial ri

Alexander Zagoruyko 1 Nov 11, 2022
Context Axial Reverse Attention Network for Small Medical Objects Segmentation

CaraNet: Context Axial Reverse Attention Network for Small Medical Objects Segmentation This repository contains the implementation of a novel attenti

401 Dec 23, 2022
Boostcamp AI Tech 3rd / Basic Paper reading w.r.t Embedding

Boostcamp AI Tech 3rd : Basic Paper Reading w.r.t Embedding TL;DR 1992년부터 2018년도까지 이루어진 word/sentence embedding의 중요한 줄기를 이루는 기초 논문 스터디를 진행하고자 합니다. 논

Soyeon Kim 14 Nov 14, 2022
One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing".

Introduction One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing". Users

seq-to-mind 18 Dec 11, 2022
Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

SSRL-for-image-classification Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

Feng 2 Nov 19, 2021